Publication date: April 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 86–87
Author(s): Björn M. Burmann , Sebastian Hiller
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone–substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone–substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone–substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone–substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone–substrate complexes at atomic resolution. Graphical abstract
[NMR paper] Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.
Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.
J Inorg Biochem. 2013 Apr;121:179-86
Authors: Peng D, Ogura H, Ma...
nmrlearner
Journal club
0
08-24-2013 04:53 PM
Interacting chaperones: NMR and X-ray combine to unravel combined relationship
Interacting chaperones: NMR and X-ray combine to unravel combined relationship
Researchers in the US have combined nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to gain new insights into the way in which a member of the histone chaperone family of specialized proteins functions.
Source: Spectroscopynow.com
nmrlearner
General
0
03-15-2012 06:10 AM
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
J Inorg Biochem. 2010 Oct;104(10):1063-70
Authors: Du Z, Unno M, Matsui T, Ikeda-Saito M, La Mar GN
Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the...
nmrlearner
Journal club
0
02-10-2011 03:51 PM
[NMR paper] Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with w
Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with water-NOE NMR experiments.
Related Articles Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with water-NOE NMR experiments.
Biochemistry. 2003 Sep 30;42(38):11100-8
Authors: Cai S, Stevens SY, Budor AP, Zuiderweg ER
The interaction of solvent of the substrate binding domain of the bacterial heat shock 70 chaperone protein DnaK was studied in its apo form and with bound hydrophobic substrate peptide, using refined nuclear magnetic...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain:
NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
Related Articles NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
Biochemistry. 1998 Jun 2;37(22):7929-40
Authors: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER
The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision...