BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-28-2015, 12:26 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes.

In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes.

Related Articles In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes.

Biophys J. 2015 Dec 15;109(12):2461-6

Authors: Warnet XL, Arnold AA, Marcotte I, Warschawski DE

Abstract
Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5*years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes.


PMID: 26682804 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solid-state NMR: An emerging technique in structural biology of self-assemblies.
Solid-state NMR: An emerging technique in structural biology of self-assemblies. Related Articles Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem. 2015 Jul 16; Authors: Habenstein B, Loquet A Abstract Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly...
nmrlearner Journal club 0 08-04-2015 03:00 PM
[NMR paper] A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophys J. 2013 Nov 19;105(10):2333-42 Authors: Kwon B, Waring AJ, Hong M Abstract Domain formation in bacteria-mimetic membranes...
nmrlearner Journal club 0 07-12-2014 04:28 AM
[NMR paper] In-cell NMR: an emerging approach for monitoring metal-related events in living cells.
In-cell NMR: an emerging approach for monitoring metal-related events in living cells. Related Articles In-cell NMR: an emerging approach for monitoring metal-related events in living cells. Metallomics. 2013 Nov 8; Authors: Li H, Sun H Abstract In-cell NMR, an isotope-assisted multi-dimensional NMR technique, has been proven to be successful in the investigation of protein dynamics, folding, conformational changes induced by binding events, posttranslational modification in the complex native environments, as well as in vivo drug...
nmrlearner Journal club 0 11-11-2013 01:30 AM
[NMR paper] Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study.
Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study. Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study. Faraday Discuss. 2013;161:499-513; discussion 563-89 Authors: Wallgren M, Beranova L, Pham QD, Linh K, Lidman M, Procek J, Cyprych K, Kinnunen PK, Hof M, Gröbner G Abstract Membranes undergo severe changes under oxidative stress conditions due to the...
nmrlearner Journal club 0 06-29-2013 11:49 AM
[NMR paper] Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study.
Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study. Related Articles Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study. Biochim Biophys Acta. 2013 Apr 5; Authors: Ciesielski F, Griffin DC, Rittig M, Moriyón I, Bonev BB Abstract Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement...
nmrlearner Journal club 0 04-10-2013 07:21 PM
Solid-State (19)F-NMR of Peptides in Native Membranes.
Solid-State (19)F-NMR of Peptides in Native Membranes. Solid-State (19)F-NMR of Peptides in Native Membranes. Top Curr Chem. 2011 May 20; Authors: Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR,...
nmrlearner Journal club 0 05-21-2011 07:51 PM
[NMR paper] Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd
Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd NMR. Related Articles Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd NMR. Biochemistry. 2000 Jun 13;39(23):6751-5 Authors: Matysik J, Alia A, Nachtegaal G, van Gorkom HJ, Hoff AJ, de Groot HJ Calcium (Ca(2+)) is an essential cofactor for photosynthetic oxygen evolution. Although the involvement of Ca(2+) at the oxidizing side of photosystem II of plants has been known for a long time, its ligand interactions and mode of...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Interaction of a type II myosin with biological membranes studied by 2H solid state N
Interaction of a type II myosin with biological membranes studied by 2H solid state NMR. Related Articles Interaction of a type II myosin with biological membranes studied by 2H solid state NMR. Biochemistry. 1998 Apr 21;37(16):5582-8 Authors: Arêas JA, Gröbner G, Glaubitz C, Watts A Deuterium nuclear magnetic resonance spectroscopy (2H NMR) has been employed to investigate the interaction of lung type II myosin protein with neutral bilayers containing dimyristoylphosphatidylcholine (DMPC) as the only constituent and mixed bilayers containing...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:14 AM.


Map