Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we...
[NMR paper] Paramagnetic Properties of a Crystalline Iron-Sulfur Protein by Magic-Angle Spinning NMR Spectroscopy.
Paramagnetic Properties of a Crystalline Iron-Sulfur Protein by Magic-Angle Spinning NMR Spectroscopy.
Related Articles Paramagnetic Properties of a Crystalline Iron-Sulfur Protein by Magic-Angle Spinning NMR Spectroscopy.
Inorg Chem. 2017 May 24;
Authors: Bertarello A, Schubeis T, Fuccio C, Ravera E, Fragai M, Parigi G, Emsley L, Pintacuda G, Luchinat C
Abstract
We present the first solid-state NMR study of an iron-sulfur protein. The combined use of very fast (60 kHz) magic-angle spinning and tailored radiofrequency irradiation...
nmrlearner
Journal club
0
05-26-2017 08:36 PM
[NMR paper] Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy.
Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy.
Related Articles Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy.
Methods Mol Biol. 2016;1345:173-83
Authors: Tuttle MD, Courtney JM, Barclay AM, Rienstra CM
Abstract
Solid-state NMR spectroscopy (SSNMR) is an established and invaluable tool for the study of amyloid fibril structure with atomic-level detail. Optimization of the homogeneity and concentration of fibrils enhances the resolution and sensitivity...
nmrlearner
Journal club
0
10-12-2015 01:04 AM
[NMR paper] Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Related Articles Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Annu Rev Biophys. 2013 Mar 22;
Authors: Comellas G, Rienstra CM
Abstract
Protein structure determination methods using magic-angle spinning solidstate nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable...
nmrlearner
Journal club
0
03-27-2013 03:33 PM
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, Macphee CE, Rosay MM, Maas WE, Dobson CM, Griffin RG
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two...
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100077x/aop/images/medium/bi-2010-00077x_0004.gif
Biochemistry
DOI: 10.1021/bi100077x
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/jvIszRWKX60
More...
nmrlearner
Journal club
0
10-14-2010 04:59 AM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Biochemistry. 2010 Aug 9;
Authors: van der Wel PC, Lewandowski JR, Griffin RG
Various human diseases feature the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental...