BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-29-2013, 01:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

Nucleic Acids Res. 2013 Aug 27;

Authors: Barabás O, Németh V, Bodor A, Perczel A, Rosta E, Kele Z, Zagyva I, Szabadka Z, Grolmusz VI, Wilmanns M, Vértessy BG

Abstract
Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the ?-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue ?,?-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.


PMID: 23982515 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance.
Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Structure. 2013 Jan 8;21(1):32-41 Authors: Nyirenda J, Matsumoto S, Saitoh T, Maita N, Noda NN, Inagaki F, Kohda D Abstract Oligosaccharyltransferase (OST) is a membrane-bound...
nmrlearner Journal club 0 07-03-2013 01:46 PM
Li Ion Diffusion in the Anode Material Li12Si7: Ultrafast Quasi-1D Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7Li NMR Relaxometry
Li Ion Diffusion in the Anode Material Li12Si7: Ultrafast Quasi-1D Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7Li NMR Relaxometry Alexander Kuhn, Puravankara Sreeraj, Rainer Po?ttgen, Hans-Dieter Wiemho?fer, Martin Wilkening and Paul Heitjans http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2020108/aop/images/medium/ja-2011-020108_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja2020108 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-28-2011 04:32 AM
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. J Proteome Res. 2010 Dec 3;9(12):6729-39 Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner Journal club 0 05-25-2011 07:01 PM
[NMR paper] NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar.
NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. Related Articles NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol. 2005 Mar 25;347(2):277-85 Authors: Kitahara R, Yokoyama S, Akasaka K Conformational fluctuation plays a key role in protein function, but we know little about the associated structural changes. Here we present a general method for elucidating, at the atomic level, a large-scale shape change of a protein molecule in solution undergoing conformational fluctuation....
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic
The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Related Articles The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Biochemistry. 2004 Apr 13;43(14):4082-91 Authors: Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P
Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Related Articles Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int. 2003 May;72(5):610-26 Authors: Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ Previous 31P cross-polarization and differential cross-polarization magic angle spinning (CP/MAS and DCP/MAS) solid-state NMR...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Sa
NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Salmonella typhimurium. Related Articles NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Salmonella typhimurium. Biochim Biophys Acta. 2003 Mar 17;1620(1-3):8-14 Authors: Delgoda R, Lian LY, Sandy J, Sim E Arylamine N-acetyltransferases (NAT) are a family of enzymes found in both eucaryotes and procaryotes, which catalyse the N-acetylation of a range of arylamine and hydrazine drugs and carcinogenic arylamines, using acetyl...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Identification of reaction products and intermediates of aromatic-amine dehydrogenase
Identification of reaction products and intermediates of aromatic-amine dehydrogenase by 15N and 13C NMR. Related Articles Identification of reaction products and intermediates of aromatic-amine dehydrogenase by 15N and 13C NMR. Biochem J. 1998 Mar 15;330 ( Pt 3):1159-63 Authors: Bishop GR, Zhu Z, Whitehead TL, Hicks RP, Davidson VL 13C- and 15N-NMR studies of the reaction of aromatic amine dehydrogenase (AADH) with methylamine demonstrated that the products of the reductive half-reaction are an equivalent of formaldehyde hydrate and a reduced...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:47 AM.


Map