Related ArticlesThe casein kinase 2-dependent phosphorylation of NS5A domain 3 from hepatitis C virus followed by time-resolved NMR.
Chembiochem. 2015 Dec 18;
Authors: Secci E, Luchinat E, Banci L
Abstract
Hepatitis C virus (HCV) chronically affects millions of individuals worldwide. The HCV non-structural protein 5A (NS5A) plays a critical role in the viral assembly pathway. Domain 3 (D3) of NS5A is an unstructured polypeptide responsible for the interaction with the core particle assembly structure. Casein kinase 2 (CK2) phosphorylates NS5A-D3 at multiple sites, which have been largely predicted and only indirectly observed. In order to identify the CK2-dependent phosphorylation sites, we monitored in vitro the reaction between NS5A-D3 and CK2 by time-resolved NMR. We unambiguously identified four serine residues as substrates of CK2. The apparent rate constant was determined for each site from the reaction curves. Serine 408 was quickly phosphorylated, while three other serines reacted slower. These results provide a starting point to elucidate the role of phosphorylation in the mechanisms of viral assembly, and in the modulation of the viral activity, at the molecular level.
PMID: 26684216 [PubMed - as supplied by publisher]
[NMR paper] Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR.
Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR.
Related Articles Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR.
Biochim Biophys Acta. 2014 Aug 7;
Authors: Shalom-Elazari H, Zazrin-Greenspon H, Shaked H, Chill JH
Abstract
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both...
nmrlearner
Journal club
0
08-12-2014 06:25 PM
[NMR paper] Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis.
Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis.
Biochim Biophys Acta. 2014 Jan;1840(1):556-64
Authors: Gorietti D, Zanni...
nmrlearner
Journal club
0
03-14-2014 07:34 PM
[NMR paper] Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR.
Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR.
Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR.
Biochim Biophys Acta. 2013 Nov 2;
Authors: Zazrin H, Shaked H, Chill JH
Abstract
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent...
nmrlearner
Journal club
0
11-07-2013 11:06 AM
[NMR paper] Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Nat Protoc. 2013 Jun 27;8(7):1416-1432
Authors: Theillet FX, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P
Abstract
We outline NMR protocols for site-specific mapping and time-resolved monitoring of...
nmrlearner
Journal club
0
06-29-2013 11:49 AM
[NMR paper] Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Related Articles Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Chembiochem. 2013 Jun 6;
Authors: Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M
Abstract
Intrinsically disordered regions (IDRs) are preferred sites for post-translational modifications essential for regulating protein function. The enhanced local...
nmrlearner
Journal club
0
06-08-2013 02:18 PM
[NMR paper] Conformational changes in a photosensory LOV domain monitored by time-resolved NMR sp
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy.
Related Articles Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy.
J Am Chem Soc. 2004 Mar 24;126(11):3390-1
Authors: Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH
Phototropins are light-activated kinases from plants that utilize light-oxygen-voltage (LOV) domains as blue light photosensors. Illumination of these domains leads to the formation of a covalent linkage between the protein and an...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (3
Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Related Articles Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Biochemistry. 2002 May 14;41(19):5968-77
Authors: Seifert MH, Breitenlechner CB, Bossemeyer D, Huber R, Holak TA, Engh RA
Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optic
Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
Related Articles Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
J Mol Biol. 1998 Feb 27;276(3):657-67
Authors: Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM
The refolding kinetics of the chemically denatured SH3 domain of phosphatidylinositol 3'-kinase (PI3-SH3) have been monitored by real-time one-dimensional 1H NMR coupled with a variety of other biophysical techniques. These...