Related ArticlesCardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling.
Conformational changes in both free cardiac troponin C (cTnC) and in complex with a recombinant troponin I protein [cTnI(33-211), cTnI(33-80), or cTnI (86-211)] were observed by means of a combination of selective carbon-13 and spin labeling. The paramagnetic effect from the nitroxide spin label, MTSSL, attached to cTnC(C35S) at Cys 84 allowed measurement of the relative distances to the 13C-methyl groups of the 10 methionines of cTnC in the monomer or complex. All 10 1H-13C correlations in the heteronuclear single- and multiple-quantum coherence (HSMQC) spectrum of [13C-methyl] Met cTnC in the complex with cTnI(33-211) were previously assigned [Krudy, G. A., Kleerekoper, Q., Guo, X., Howarth, J. W., Solaro, R. J., & Rosevear, P. R. (1994) J. Biol. Chem. 269, 23731-23735]. In the presence of oxidized spin label, nine of the 10 Met methyl 1H-13C correlations of cTnC were significantly broadened in the cTnC(C35S) monomer. This suggests flexibility within the central helix, or interdomain D/E helical linker, bringing the N- and C-terminal domains in closer proximity than predicted from the crystallographic structure of TnC. In the spin-labeled cTnC(C35S). cTnI(33-211) complex only N-terminal Met methyl 1H-13C correlations of cTnC(C35S) were paramagnetically broadened beyond detection, whereas correlations for Met residues (103, 120, 137, and 157) in the C-terminal domain were not. Thus, complex formation with cTnI decreases interdomain flexibility and maintains cTnC in an extended conformation. This agrees with the recently published study suggesting that sTnC is extended when bound to sTnI [Olah, G. A., & Trewhella, J. (1994) Biochemistry 33, 12800-12806]. The recombinant N-terminal domain of cTnI, cTnI(33-80), gave similar results as observed with cTnI(33-211) when complexed with spin-labeled cTnC(C35S). However, complex formation with the C-terminal fragment, cTnI(86-211), which contains the inhibitory sequence, is insufficient to maintain cTnC extended to the amount observed with either cTnI(33-211) or cTnI(33-80); although compared to that observed in free cTnC, it does cause decreased flexibility in the interdomain linker. In the absence of the N-terminal domain of cTnI, there is a decrease in flexibility within the N-terminal domain of cTnC. Interestingly, the N-terminal domain of cTnC in the reduced spin-labeled complex with cTnI(86-211), in the presence of ascorbate, showed two distinct conformations which were not seen in the complex with cTnI(33-211).(ABSTRACT TRUNCATED AT 400 WORDS)
[NMR paper] The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-N
The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study.
Related Articles The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study.
FEBS Lett. 2002 Feb 27;513(2-3):289-93
Authors: Schmidtmann A, Lohmann K, Jaquet K
Cardiac troponin I, the inhibitory subunit of the heterotrimeric cardiac troponin (cTn) complex is phosphorylated by protein kinase A at two serine residues located in its heart-specific N-terminal extension. This flexible arm interacts at different sites...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] NMR studies delineating spatial relationships within the cardiac troponin I-troponin
NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex.
Related Articles NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex.
J Biol Chem. 1994 Sep 23;269(38):23731-5
Authors: Krudy GA, Kleerekoper Q, Guo X, Howarth JW, Solaro RJ, Rosevear PR
NMR spectroscopy and selective isotope labeling of both recombinant cardiac troponin C (cTnC3) and a truncated cardiac troponin I (cTnI/NH2) lacking the N-terminal 32-amino acid cardiac-specific sequence have been used to...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calci
Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II.
Related Articles Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II.
Biochemistry. 1991 Oct 22;30(42):10236-45
Authors: Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calci
Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II.
Related Articles Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II.
Biochemistry. 1991 Oct 22;30(42):10236-45
Authors: Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Interaction of troponin I and troponin C: 19F NMR studies of the binding of the inhib
Interaction of troponin I and troponin C: 19F NMR studies of the binding of the inhibitory troponin I peptide to turkey skeletal troponin C.
Related Articles Interaction of troponin I and troponin C: 19F NMR studies of the binding of the inhibitory troponin I peptide to turkey skeletal troponin C.
Biochem Cell Biol. 1991 Sep;69(9):674-81
Authors: Campbell AP, Cachia PJ, Sykes BD
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR
Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases.
Eur J Biochem. 1990 Jul 5;190(3):575-82
Authors: Swiderek K, Jaquet K, Meyer HE, Schächtele C, Hofmann F, Heilmeyer LM
...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
[NMR paper] NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation.
NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation.
FEBS Lett. 1999 Jun 18;453(1-2):107-12
Authors: Finley N, Abbott MB, Abusamhadneh E, Gaponenko V, Dong W, Gasmi-Seabrook G, Howarth JW, Rance M, Solaro RJ, Cheung HC, Rosevear PR
Phosphorylation of the cardiac specific amino-terminus of troponin I has...