BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-06-2011, 10:54 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.

The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.

The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.

Biophys J. 2011 Apr 6;100(7):1718-28

Authors: Pfuhl M, Al-Sarayreh S, El-Mezgueldi M

Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that the recombinant calponin fragment 131-228 contained actin and calmodulin recognition sites but failed to precisely identify the actin-binding determinants. In this study, we used NMR spectroscopy to investigate the structure of this functionally important region of calponin and map its interaction with actin and calmodulin at amino-acid resolution. Our data indicates that the free calponin peptide is largely unstructured in solution, although four short amino-acid stretches corresponding to residues 140-146, 159-165, 189-195, and 199-205 display the propensity to form ?-helices. The presence of four sequential transient helices probably provides the conformational malleability needed for the promiscuous nature of this region of calponin. We identified all amino acids involved in actin binding and demonstrated for the first time, to our knowledge, that the N-terminal flanking region of Lys(137)-Tyr(144) is an integral part of the actin-binding site. We have also delineated the second actin-binding site to amino acids Thr(180)-Asp(190). Ca(2+)-calmodulin binding extends beyond the previously identified minimal sequence of 153-163 and includes most amino acids within the stretch 143-165. In addition, we found that calmodulin induces chemical shift perturbations of amino acids 188-190 demonstrating for the first time, to our knowledge, an effect of Ca(2+)-calmodulin on this region. The spatial relationship of the actin and calmodulin contacts as well as the transient ?-helical structures within the regulatory region of calponin provides a structural framework for understanding the Ca(2+)-dependent regulation of the actin-calponin interaction by calmodulin.

PMID: 21463585 [PubMed - in process]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. J Biol Chem. 2011 Apr 20; Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner Journal club 0 04-22-2011 02:00 PM
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode.
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode. NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode. J Biomol NMR. 2010 Sep;48(1):59-64 Authors: Umemoto R, Nishida N, Ogino S, Shimada I
nmrlearner Journal club 0 12-18-2010 12:00 PM
[NMR paper] NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.
NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Related Articles NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J. 2005 Mar;88(3):2030-7 Authors: Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder,...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Fast mapping of protein-protein interfaces by NMR spectroscopy.
Fast mapping of protein-protein interfaces by NMR spectroscopy. Related Articles Fast mapping of protein-protein interfaces by NMR spectroscopy. J Am Chem Soc. 2003 Nov 26;125(47):14250-1 Authors: Reese ML, Dötsch V Identifying the interface of protein complexes can represent a difficult task in structural biology. Here, we report a method for the fast mapping of interfaces of protein complexes by NMR without the need for the assignments of the proteins involved.
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy:
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Related Articles Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Biochemistry. 2000 Dec 26;39(51):15920-31 Authors: Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy
Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. Related Articles Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. J Biol Chem. 1994 Feb 18;269(7):5099-105 Authors: Zhang M, Huque E, Vogel HJ In this paper, we describe three approaches to study the single trimethyllysine 115 in calmodulin. First, 14N NMR spectroscopy has been used as a novel spectroscopic tool. Because of the unique symmetrical tetrahedral substitution of its side chain, the trimethyllysine residue...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy
Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. Related Articles Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. J Biol Chem. 1994 Feb 18;269(7):5099-105 Authors: Zhang M, Huque E, Vogel HJ In this paper, we describe three approaches to study the single trimethyllysine 115 in calmodulin. First, 14N NMR spectroscopy has been used as a novel spectroscopic tool. Because of the unique symmetrical tetrahedral substitution of its side chain, the trimethyllysine residue...
nmrlearner Journal club 0 08-22-2010 03:33 AM
NMR structure of the calponin homology domain of human IQGAP1 and its implications fo
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode Content Type Journal Article DOI 10.1007/s10858-010-9434-8 Authors Ryo Umemoto, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Noritaka Nishida, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Shinji Ogino, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:55 PM.


Map