Related ArticlesCalcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
Biochemistry. 2000 Dec 26;39(51):15920-31
Authors: Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J
The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up to a [Ca(2+)]/[CaM] ratio of 2, the Ca(2+) ions bind predominantly to sites I and II on the N-domain in contrast with the behavior of the wild-type calmodulin where the C-terminal domain has the higher affinity for Ca(2+). Surprisingly, the Ca(2+)-binding affinity for the N-domain in the mutant calmodulin is greater than that for the N-domain in the wild-type protein. The mutated C-domain is observed as a mixture of unfolded, partially folded (site III occupied), and native-like folded (sites III and IV occupied) conformations, with relative populations dependent on the [Ca(2+)]/[CaM] ratio. The occupancy of site III independently of site IV in this mutant shows that the cooperativity of Ca(2+) binding in the C-domain is mediated by the integrity of the domain structure. Several NH signals from residues in the Ca(2+)-bound N-domain appear as two signals during the Ca(2+) titration indicating separate species in slow exchange, and it can be deduced that these result from the presence and absence of interdomain interactions in the mutant. It is proposed that an unfolded part of the mutated C-domain interacts with sites on the N-domain that normally bind to target proteins. This would also account for the increase in the Ca(2+) affinity for the N-domain in the mutant compared with the wild-type calmodulin. The results therefore show the wide-ranging effects of a point mutation in a single Ca(2+)-binding site, providing details of the involvement of individual residues in the calcium-induced folding reactions.
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner
Journal club
0
03-03-2011 02:06 AM
[NMR paper] Secondary structure and calcium-induced folding of the Clostridium thermocellum docke
Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy.
Related Articles Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy.
Arch Biochem Biophys. 2000 Jul 15;379(2):237-44
Authors: Lytle BL, Volkman BF, Westler WM, Wu JH
Assembly of the cellulosome, a large, extracellular cellulase complex, depends upon docking of a myriad of enzymatic subunits to homologous receptors, or cohesin domains, arranged...
[NMR paper] Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurem
Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
Eur J Biochem. 1995 Jun 15;230(3):1014-24
Authors: Tjandra N, Kuboniwa H, Ren H, Bax A
The backbone motions of calcium-free Xenopus calmodulin have been characterized by measurements of the 15N...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Calmodulin discriminates between the two enantiomers of the receptor-operated calcium
Calmodulin discriminates between the two enantiomers of the receptor-operated calcium channel blocker SK&F 96365: a study using 1H-NMR and chiral HPLC.
Related Articles Calmodulin discriminates between the two enantiomers of the receptor-operated calcium channel blocker SK&F 96365: a study using 1H-NMR and chiral HPLC.
Chirality. 1990;2(4):229-32
Authors: Reid DG, MacLachlan LK, Robinson SP, Camilleri P, Dyke CA, Thorpe CJ
1H nuclear magnetic resonance at 360 MHz shows that SK&F 96365 (1-(beta--p-methoxyphenethyl)-1H- imidazole hydrochloride),...