BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobil

Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions.

Related Articles Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions.

J Mol Biol. 2002 Dec 6;324(4):823-39

Authors: Häussinger D, Ahrens T, Sass HJ, Pertz O, Engel J, Grzesiek S

Cadherins are calcium-dependent cell surface proteins that mediate homophilic cellular adhesion. The calcium-induced oligomerization of the N-terminal two domains of epithelial cadherin (ECAD12) was followed by NMR spectroscopy in solution over a large range of protein (10 microM-5 mM) and calcium (0-5 mM) concentrations. Several spectrally distinct states could be distinguished that correspond to a calcium-free monomeric form, a calcium-bound monomeric form, and to calcium-bound higher oligomeric forms. Chemical shift changes between these different states define calcium-binding residues as well as oligomerization contacts. Information about the relative orientation and mobility of the ECAD12 domains in the various states was obtained from weak alignment and 15N relaxation experiments. The data indicate that the calcium-free ECAD12 monomer adopts a flexible, kinked conformation that occludes the dimer interface observed in the ECAD12 crystal structure. In contrast, the calcium-bound monomer is already in a straight, non-flexible conformation where this interface is accessible. This mechanism provides a rational for the calcium-induced adhesiveness. Oligomerization induces chemical shift changes in an area of domain CAD1 that is centered at residue Trp-2. These shift changes extend to almost the entire surface of domain CAD1 at high (5 mM) protein concentrations. Smaller additional clusters of shift perturbations are observed around residue A80 in CAD1 and K160 in CAD2. According to weak alignment and relaxation data, the symmetry of a predominantly dimeric solution aggregate at 0.6 mM ECAD12 differs from the approximate C2-symmetry of the crystalline dimer.

PMID: 12460580 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy Abstract Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising...
nmrlearner Journal club 0 02-13-2012 02:34 AM
Calcium binding environments probed by (43)Ca NMR spectroscopy.
Calcium binding environments probed by (43)Ca NMR spectroscopy. Calcium binding environments probed by (43)Ca NMR spectroscopy. Dalton Trans. 2010 Oct 7;39(37):8593-602 Authors: Bryce DL Calcium is an important component of materials, metalloproteins, minerals, glasses, and small inorganic and organic complexes. However, NMR spectroscopy of the quadrupolar (43)Ca nuclide remains difficult primarily due to its low natural abundance and low resonance frequency. In this Perspective, experimental challenges and recent successes in the field are...
nmrlearner Journal club 0 12-16-2010 09:21 PM
[NMR paper] Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography.
Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. Related Articles Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J. 2004 Apr 21;23(8):1699-708 Authors: Häussinger D, Ahrens T, Aberle T, Engel J, Stetefeld J, Grzesiek S Cellular adhesion by classical cadherins depends critically on the exact proteolytic removal of their N-terminal prosequences. In this combined solution NMR and X-ray crystallographic study, the consequences of propeptide cleavage of an epithelial...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy:
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Related Articles Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Biochemistry. 2000 Dec 26;39(51):15920-31 Authors: Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobil
Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobility in proteins. Related Articles Disulfide bond isomerization in BPTI and BPTI(G36S): an NMR study of correlated mobility in proteins. Biochemistry. 1993 Apr 13;32(14):3571-82 Authors: Otting G, Liepinsh E, Wüthrich K Two conformational isomers were observed in the 1H nuclear magnetic resonance (NMR) spectra of the basic pancreatic trypsin inhibitor (BPTI) and of a mutant protein with Gly 36 replaced by Ser, BPTI(G36S). The less abundant isomer differs from...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. Eur J Biochem. 1993 Feb 1;211(3):555-62 Authors: Turner DL, Williams RJ The redox-state dependent changes in chemical shift, which have...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:48 AM.


Map