BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-17-2015, 01:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ca2+-induced PRE-NMR changes in the troponin complex reveal the possessive nature of the cardiac isoform for its regulatory switch.

Ca2+-induced PRE-NMR changes in the troponin complex reveal the possessive nature of the cardiac isoform for its regulatory switch.

Related Articles Ca2+-induced PRE-NMR changes in the troponin complex reveal the possessive nature of the cardiac isoform for its regulatory switch.

PLoS One. 2014;9(11):e112976

Authors: Cordina NM, Liew CK, Potluri PR, Curmi PM, Fajer PG, Logan TM, Mackay JP, Brown LJ

Abstract
The interaction between myosin and actin in cardiac muscle, modulated by the calcium (Ca2+) sensor Troponin complex (Tn), is a complex process which is yet to be fully resolved at the molecular level. Our understanding of how the binding of Ca2+ triggers conformational changes within Tn that are subsequently propagated through the contractile apparatus to initiate muscle activation is hampered by a lack of an atomic structure for the Ca2+-free state of the cardiac isoform. We have used paramagnetic relaxation enhancement (PRE)-NMR to obtain a description of the Ca2+-free state of cardiac Tn by describing the movement of key regions of the troponin I (cTnI) subunit upon the release of Ca2+ from Troponin C (cTnC). Site-directed spin-labeling was used to position paramagnetic spin labels in cTnI and the changes in the interaction between cTnI and cTnC subunits were then mapped by PRE-NMR. The functionally important regions of cTnI targeted in this study included the cTnC-binding N-region (cTnI57), the inhibitory region (cTnI143), and two sites on the regulatory switch region (cTnI151 and cTnI159). Comparison of 1H-15N-TROSY spectra of Ca2+-bound and free states for the spin labeled cTnC-cTnI binary constructs demonstrated the release and modest movement of the cTnI switch region (~10 Å) away from the hydrophobic N-lobe of troponin C (cTnC) upon the removal of Ca2+. Our data supports a model where the non-bound regulatory switch region of cTnI is highly flexible in the absence of Ca2+ but remains in close vicinity to cTnC. We speculate that the close proximity of TnI to TnC in the cardiac complex is favourable for increasing the frequency of collisions between the N-lobe of cTnC and the regulatory switch region, counterbalancing the reduction in collision probability that results from the incomplete opening of the N-lobe of TnC that is unique to the cardiac isoform.


PMID: 25392916 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain.
Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain. Related Articles Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain. Biomol NMR Assign. 2014 Jan 12; Authors: Rostkova E, Gautel M, Pfuhl M Abstract The regulatory light chain (RLC) of striated and cardiac muscle myosin plays a complex role in muscle function and regulation. Together with the essential light chain it provides stability to the lever arm, which is essential for force...
nmrlearner Journal club 0 01-15-2014 05:16 PM
[NMR paper] The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-N
The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study. Related Articles The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study. FEBS Lett. 2002 Feb 27;513(2-3):289-93 Authors: Schmidtmann A, Lohmann K, Jaquet K Cardiac troponin I, the inhibitory subunit of the heterotrimeric cardiac troponin (cTn) complex is phosphorylated by protein kinase A at two serine residues located in its heart-specific N-terminal extension. This flexible arm interacts at different sites...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Cardiac troponin I induced conformational changes in cardiac troponin C as monitored
Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Related Articles Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Biochemistry. 1995 Oct 17;34(41):13343-52 Authors: Kleerekoper Q, Howarth JW, Guo X, Solaro RJ, Rosevear PR Conformational changes in both free cardiac troponin C (cTnC) and in complex with a recombinant troponin I protein were observed by means of a...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR studies delineating spatial relationships within the cardiac troponin I-troponin
NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. Related Articles NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J Biol Chem. 1994 Sep 23;269(38):23731-5 Authors: Krudy GA, Kleerekoper Q, Guo X, Howarth JW, Solaro RJ, Rosevear PR NMR spectroscopy and selective isotope labeling of both recombinant cardiac troponin C (cTnC3) and a truncated cardiac troponin I (cTnI/NH2) lacking the N-terminal 32-amino acid cardiac-specific sequence have been used to...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calci
Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Related Articles Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Biochemistry. 1991 Oct 22;30(42):10236-45 Authors: Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II,...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calci
Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Related Articles Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Biochemistry. 1991 Oct 22;30(42):10236-45 Authors: Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II,...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR
Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur J Biochem. 1990 Jul 5;190(3):575-82 Authors: Swiderek K, Jaquet K, Meyer HE, Schächtele C, Hofmann F, Heilmeyer LM ...
nmrlearner Journal club 0 08-21-2010 11:04 PM
[NMR paper] NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation.
NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation. FEBS Lett. 1999 Jun 18;453(1-2):107-12 Authors: Finley N, Abbott MB, Abusamhadneh E, Gaponenko V, Dong W, Gasmi-Seabrook G, Howarth JW, Rance M, Solaro RJ, Cheung HC, Rosevear PR Phosphorylation of the cardiac specific amino-terminus of troponin I has...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:27 PM.


Map