[NMR paper] Broadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
Broadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
Related ArticlesBroadband homonuclear correlation spectroscopy driven by combined R2n(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids.
J Magn Reson. 2013 Apr 28;232C:18-30
Authors: Hou G, Yan S, Trébosc J, Amoureux JP, Polenova T
Abstract
We recently described a family of experiments for R2n(v) Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2n(v) sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2n(v) sequences, dubbed COmbined R2n(v)-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (?r=40kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-(13)C,(15)N-alanine and U-(13)C,(15)N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-(13)C,(15)N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities across the entire chemical shift range.
PMID: 23685715 [PubMed - as supplied by publisher]
[NMR paper] Broadband Homonuclear Correlation Spectroscopy Driven by Combined R2nv Sequences under Fast Magic Angle Spinning for NMR Structural Analysis of Organic and Biological Solids
Broadband Homonuclear Correlation Spectroscopy Driven by Combined R2nv Sequences under Fast Magic Angle Spinning for NMR Structural Analysis of Organic and Biological Solids
Publication date: Available online 28 April 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Guangjin Hou , Si Yan , Julien Trebosc , Jean-Paul Amoureux , Tatyana Polenova</br>
We recently described a family of experiments for R2 n v Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions (J. Am. Chem. Soc., 133, 2011,...
nmrlearner
Journal club
0
04-29-2013 06:00 AM
Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids
Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids
Guangjin Hou, Sivakumar Paramasivam, Si Yan, Tatyana Polenova and Alexander J. Vega
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3084972/aop/images/medium/ja-2012-084972_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja3084972
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/y3Jt7S8MwHM
Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids.
Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids.
Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids.
J Am Chem Soc. 2011 Mar 1;
Authors: Hou G, Yan S, Sun S, Han Y, Byeon IJ, Ahn J, Concel J, Samoson A, Gronenborn AM, Polenova T
We present a family of homonuclear (13)C-(13)Cmagic angle spinning spin diffusion experiments, based on R2(n)(v) (n = 1 and 2, v = 1...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids
Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation Spectroscopy in MAS NMR of Biological and Organic Solids
Guangjin Hou, Si Yan, Shangjin Sun, Yun Han, In-Ja L. Byeon, Jinwoo Ahn, Jason Concel, Ago Samoson, Angela M. Gronenborn and Tatyana Polenova
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108650x/aop/images/medium/ja-2010-08650x_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja108650x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
03-02-2011 02:01 AM
[NMR paper] Probing membrane protein orientation and structure using fast magic-angle-spinning so
Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
Related Articles Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR.
J Biomol NMR. 2004 Nov;30(3):253-65
Authors: Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DT, Angerstein B, Luca S, Koert U, Killian JA, Baldus M
One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Magic angle spinning solid-state NMR spectroscopy for structural studies of protein i
Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
Related Articles Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
J Am Chem Soc. 2004 Dec 22;126(50):16608-20
Authors: Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V,...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
Recoupling of native homonuclear dipolar couplings in magic-angle-spinning solid-stat
Recoupling of native homonuclear dipolar couplings in magic-angle-spinning solid-state NMR by the double-oscillating field technique.
Related Articles Recoupling of native homonuclear dipolar couplings in magic-angle-spinning solid-state NMR by the double-oscillating field technique.
J Chem Phys. 2010 Aug 14;133(6):064501
Authors: Straaso LA, Nielsen NC
A new solid-state NMR method, the double-oscillating field technique (DUO), that under magic-angle-spinning conditions produces an effective Hamiltonian proportional to the native high-field...