BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-28-2012, 01:35 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)41 super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies

Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)41 super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies


Publication year: 2012
Source:Journal of Magnetic Resonance

Ming Shen, Bingwen Hu, Oliver Lafon, Julien Trébosc, Qun Chen, Jean-Paul Amoureux

We demonstrate that inter-residue 13C-13C proximities (of about 380 pm) in uniformly 13C-labeled proteins can be probed by applying robust first-order recoupling during several milliseconds in single-quantum single-quantum dipolar homo-nuclear correlation (SQ-SQ D-HOMCOR) 2D experiments. We show that the intensity of medium-range homo-nuclear correlations in these experiments is enhanced using broadband first-order finite-pulse radio-frequency-driven recoupling (fp-RFDR) NMR sequence with a nested (XY8)41 super-cycling. The robustness and the efficiency of the fp-RFDR-(XY8)41 method is demonstrated at high magnetic field (21.1 T) and high magic-angle spinning (MAS) speeds (up to 60 kHz). The introduced super-cycling, formed by combining phase inversion and a global four-quantum phase cycle, improves the robustness of fp-RFDR to (i) chemical shift anisotropy (CSA), (ii) spread in isotropic chemical shifts, (iii) rf-inhomogeneity and (iv) hetero-nuclear dipolar couplings for long recoupling times. We show that fp-RFDR-(XY8)41 is efficient sans 1H decoupling, which is beneficial for temperature-sensitive biomolecules. The efficiency and the robustness of fp-RFDR-(XY8)41 is investigated by spin dynamics numerical simulations as well as solid-state NMR experiments on [U-13C]-L-histdine.HCl, a tetra-peptide (Fmoc-[U-13C,15N]-Val-[U-13C,15N]-Ala-[U-13C,15N]-Phe-Gly-t-Boc) and Al(PO3)3.
Graphical abstract

Graphical abstract Highlights

? Super-cycled RFDR. ? Robust to offsets. ? Robust for long-time recoupling. ? Robust to very large CSA.





Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range Abstract The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their...
nmrlearner Journal club 0 06-25-2011 04:12 AM
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields Abstract Sensitive 2D solid-state 13Câ??13C correlation spectra of amyloid β fibrils have been recorded at very fast spinning frequencies and very high magnetic fields. It is demonstrated that PARIS-xy recoupling using moderate rf amplitudes can provide structural information by promoting efficient magnetization transfer even under such challenging experimental conditions. Furthermore, it has been shown both experimentally and by numerical simulations that the method is not...
nmrlearner Journal club 0 04-01-2011 09:23 AM
Radio frequency assisted homonuclear recoupling - A Floquet description of homonuclear recoupling via surrounding heteronuclei in fully protonated to fully deuterated systems
Radio frequency assisted homonuclear recoupling - A Floquet description of homonuclear recoupling via surrounding heteronuclei in fully protonated to fully deuterated systems Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 18 January 2011</br> Michal, Leskes , Ümit, Akbey , Hartmut, Oschkinat , Barth-Jan, van Rossum , Shimon, Vega</br> We present a Floquet theory approach for the analysis of homonuclear recoupling assisted by radio frequency (RF) irradiation of surrounding heteronuclear spins. This description covers a...
nmrlearner Journal club 0 01-19-2011 03:04 PM
[NMR paper] Combined frequency- and time-domain NMR spectroscopy. Application to fast protein res
Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. Related Articles Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. J Biomol NMR. 2004 May;29(1):57-64 Authors: Brutscher B A simple and general method is presented to simplify multi-dimensional NMR spectra of isotope-labeled bio-molecules. The approach is based on band-selective Hadamard-type frequency encoding, which disperses the correlation peaks into different sub-spectra. This makes...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR thesis] Solid state NMR at high magnetic fields using multiple pulse techniques
Solid state NMR at high magnetic fields using multiple pulse techniques Carson, Douglas Glenn (1981) Solid state NMR at high magnetic fields using multiple pulse techniques. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-10102006-095702 More...
nmrlearner NMR theses 0 08-27-2010 01:45 AM
[U. of Ottawa NMR Facility Blog] Fast 90 Degree Pulse Determination
Fast 90 Degree Pulse Determination Almost all NMR measurements rely on the correct calibration of 90° pulses. This is traditionally done by collecting a series of spectra as a function of pulse duration, finding a null for the 180° or 360° pulse and calculating the 90° pulse by simple division by 2 or 4 in the case of the 180° and 360° nulls, respectively. This determination, although trivial, can be very time consuming. Wu and Otting* have presented a much faster method of determining a 90° pulse based on measuring the nutation of a magnetization vector directly. Continuous nutation is...
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM
[NMR tweet] Radiology publications: Desktop fast-field cycling nuclear magnetic resonance relaxom
Radiology publications: Desktop fast-field cycling nuclear magnetic resonance relaxometer. ... http://bit.ly/dmjaCl Source: Twitter
nmrlearner Twitter NMR 0 08-14-2010 02:48 PM
Broadband 15Nâ??13C dipolar recoupling via symmetry-based RF pulse schemes at high MA
Abstract An approach for generating efficient RNnnS, nk symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15Nâ??13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic â??Râ?? element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic â??Râ?? element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:44 AM.


Map