BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterizati

Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.

Related Articles Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.

Biochemistry. 1996 Oct 22;35(42):13627-35

Authors: Barker PD, Freund SM

Previous work has shown that, in variants of cytochrome b562 containing the H102M mutation, methionine residues provide both axial ligands to the heme iron. NMR spectroscopic studies of such bis-methionine-coordinated cytochrome have not previously been feasible, since the only other cytochrome with such a ligand arrangement, bacterioferritin, is too large to be studied by current NMR methods. The present work provides the first NMR characterization of 6-coordinate, bis-methionine-ligated heme centers in both ferrous and ferric oxidation states. We have used one and two dimensional, homonuclear NMR spectroscopy to assign the proton resonances of the heme group and ligand side chains in the reduced, cytochrome b562 variants, H102M and covR98C/H102M. The latter protein has heme covalently attached to the protein, and our results prove that the covalent linkage is a c-type thioether bond formed between the cysteine at residue 98 and the heme 2-vinyl group. Spectra of the ferrous H102M variant are consistent with the presence of two species differing in the orientation of the heme in the protein. We have interpreted results from NOESY experiments on the ferrous covR98C/H102M protein in terms of the conformation of the two methionine side chains, and we present a model for the structure of the heme ligand arrangement. The Met7 side chain adopts an extended conformation almost identical to that observed in the wild type protein with R stereochemistry at the chiral sulfur ligand. The Met102 side chain has a different, buckled side chain conformation and has S stereochemistry at the chiral center. Our NMR derived model is consistent with the spectroscopic data presented in the previous paper. Studies on the ferric forms of these proteins confirm that the double variant at low pH has a "stable" bis-methionine ligation arrangement, but that it is a thermal mixture of species with differing spin states. No hyperfine coupled proton resonances can be identified in spectra of the high-spin forms of either of these proteins.

PMID: 8885842 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase [Biochemistry]
NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., Ishimori, K.... Date: 2011-07-26 The final interprotein electron transfer (ET) in the mammalian respiratory chain, from cytochrome c (Cyt c) to cytochrome c oxidase (CcO) is investigated by 1H-15N heteronuclear single quantum coherence spectral analysis. The chemical shift perturbation in isotope-labeled Cyt c induced by addition of unlabeled CcO indicates that the hydrophobic heme periphery and...
nmrlearner Journal club 0 07-26-2011 11:22 PM
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin. Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin. Biochim Biophys Acta. 2011 May 6; Authors: Juillard S, Chevance S, Bondon A, Simonneaux G The asymmetric 3-ethyl-2-methylporphyrin iron complex was synthetized and inserted into apomyoglobin. UV-visible spectroscopic studies demonstrated the capacity of iron to coordinate different exogenous axial ligands in ferrous and...
nmrlearner Journal club 0 05-24-2011 12:00 PM
[NMR paper] Direct determination of changes of interdomain orientation on ligation: use of the or
Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Related Articles Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry. 1999 Aug 10;38(32):10225-30 Authors: Fushman D, Xu R, Cowburn D The relative orientation and motions of domains within many proteins are key to the control of multivalent recognition, or the assembly of protein-based cellular...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Iron uptake by ferritin: NMR relaxometry studies at low iron loads.
Iron uptake by ferritin: NMR relaxometry studies at low iron loads. Related Articles Iron uptake by ferritin: NMR relaxometry studies at low iron loads. J Inorg Biochem. 1998 Sep;71(3-4):153-7 Authors: Vymazal J, Brooks RA, Bulte JW, Gordon D, Aisen P Twenty ferritin samples were prepared at pH 6.5 with average loadings of 0-89 Fe atoms per molecule. Nuclear magnetic relaxation times T1 and T2 were measured at 3 degrees C, 23 degrees C, and at 37 degrees C and at field strength from 0.025 to 1.5 T. The field dependence, temperature dependence,...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.
1H-NMR study of reduced heme proteins myoglobin and cytochrome P450. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450. Eur J Biochem. 1993 Jul 15;215(2):431-7 Authors: Banci L, Bertini I, Marconi S, Pierattelli R The 1H-NMR spectra of deoxymyoglobin and reduced cytochrome P450 are analyzed by NOE spectroscopy. Progress has been made in the assignment of the...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Biochemistry. 1991 Feb 19;30(7):1878-87 Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM 1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F b
Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR. FEBS Lett. 1991 Jul 8;285(1):149-51 Authors: Park JS, Kano K, Niki K, Akutsu H Site-specific heme assignment of the 1H-NMR spectrum of cytochrome c3 of D. vulgaris Miyazaki F, a tetraheme protein, was established. The major reduction...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F b
Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR. FEBS Lett. 1991 Jul 8;285(1):149-51 Authors: Park JS, Kano K, Niki K, Akutsu H Site-specific heme assignment of the 1H-NMR spectrum of cytochrome c3 of D. vulgaris Miyazaki F, a tetraheme protein, was established. The major reduction...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:13 PM.


Map