Extracellular matrix glycoproteins play a major role in bone mineralization and modulation of osteogenesis. Among these, the intrinsically disordered protein osteopontin (OPN) is associated with the inhibition of formation, growth and proliferation of the bone mineral hydroxyapatite (HAP). Furthermore, post-translational modifications like phosphorylation can alter conformations and interaction properties of intrinsically disordered proteins (IDPs). Therefore, the actual interaction of OPN with...
[NMR paper] Analysis of Binding Mode of 2'-GMP to Proteins Using 1H/31P NMR Spectroscopy.
Analysis of Binding Mode of 2'-GMP to Proteins Using 1H/31P NMR Spectroscopy.
Related Articles Analysis of Binding Mode of 2'-GMP to Proteins Using 1H/31P NMR Spectroscopy.
Anal Sci. 2020 Aug 07;:
Authors: Suka N, Okizumi K, Furihata K, Tashiro M
PMID: 32779575
nmrlearner
Journal club
0
08-12-2020 02:10 PM
[NMR paper] Escherichia coli topoisomerase IV E subunit and an inhibitor binding mode revealed by NMR spectroscopy.
Escherichia coli topoisomerase IV E subunit and an inhibitor binding mode revealed by NMR spectroscopy.
Escherichia coli topoisomerase IV E subunit and an inhibitor binding mode revealed by NMR spectroscopy.
J Biol Chem. 2016 Jun 30;
Authors: Li Y, Wong YL, Ng FM, Liu B, Wong YX, Poh ZY, Liu S, Then SW, Lee MY, Ng HQ, Huang Q, Hung AW, Cherian J, Hill J, Keller TH, Kang C
Abstract
Bacterial topoisomerases are attractive antibacterial drug targets due to their importance in bacterial growth and low homology with other human...
nmrlearner
Journal club
0
07-02-2016 07:23 PM
[NMR paper] Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.
Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-highwire.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates...
nmrlearner
Journal club
0
04-02-2016 09:55 PM
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets
Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas Huber, Christian D. Klein and Gottfried Otting
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b00416/20160324/images/medium/ja-2016-004167_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.6b00416
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/yfHNdUxBP5M
nmrlearner
Journal club
0
03-25-2016 04:12 PM
[NMR paper] Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
J Am Chem Soc. 2016 Mar 14;
Authors: Chen WN, Nitsche C, Pilla KB, Graham B, Huber T, Klein CD, Otting G
Abstract
Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of co-complexes is not always possible. Here we present a sensitive nuclear...
nmrlearner
Journal club
0
03-15-2016 11:57 AM
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain
Abstract
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity...
nmrlearner
Journal club
0
11-28-2014 11:37 AM
[NMR paper] Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain.
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain.
Protein Sci. 2014 Oct 18;
Authors: Joseph PR, Rajarathnam K
Abstract
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been...
nmrlearner
Journal club
0
10-21-2014 11:31 PM
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain
Abstract
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity...