Publication date: Available online 12 December 2015 Source:Journal of Magnetic Resonance
Author(s): Jesse E. McCaffrey, Zachary M. James, Bengt Svensson, Benjamin P. Binder, David D. Thomas
We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional meth-anethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB’s transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR. Graphical abstract
[NMR paper] Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
J Magn Reson. 2015 Apr 28;256:14-22
Authors: Koroloff SN, Nevzorov AA
Abstract
Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing...
nmrlearner
Journal club
0
05-13-2015 02:01 PM
[NMR paper] Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles
Publication date: Available online 28 April 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Sophie N. Koroloff , Alexander A. Nevzorov</br>
Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from...
A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles
A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles
Abstract Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the â??shotgunâ?? approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched...
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 2 July 2011</br>
Wenxing, Tang , Alexander A., Nevzorov</br>
Thermodynamic limit of magnetization corresponding to the intact proton bath often cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high-...
nmrlearner
Journal club
0
07-05-2011 05:52 AM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method
Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G....
Date: 2011-05-31
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and...
nmrlearner
Journal club
0
05-31-2011 11:41 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method.
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method.
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method.
Proc Natl Acad Sci U S A. 2011 May 16;
Authors: Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed...