BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-28-2014, 11:53 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Bicelles Exhibiting Magnetically-Alignment for a broader range of temperatures - A Solid-State NMR Study.

Bicelles Exhibiting Magnetically-Alignment for a broader range of temperatures - A Solid-State NMR Study.

Bicelles Exhibiting Magnetically-Alignment for a broader range of temperatures - A Solid-State NMR Study.

Langmuir. 2014 Jan 24;

Authors: Yamamoto K, Pearcy P, Ramamoorthy A

Abstract
Bicelles are increasingly used as model membranes to suitably mimic the biological cell membrane for biophysical and biochemical studies by a variety of techniques including NMR and X-ray crystallography. Recent NMR studies have successfully utilized bicelles for atomic-resolution structural and dynamic studies of antimicrobial peptides, amyloid peptides and membrane-bound proteins. Though bicelles composed with several different types of lipids and detergents have been reported, the NMR requirement of magnetic-alignment of bicelles limits the temperature range in which they can be used and subsequently their composition. Due to this restriction, low-temperature experiments desirable for heat-sensitive membrane proteins have not been conducted because bicelles could not be aligned. In this study, we characterize the magnetic-alignment of bicelles with various compositions for a broad range of temperatures using 31P static NMR spectroscopy in search of temperature-resistant bicelles. Our systematic investigation identified a temperature range of magnetic-alignment for bicelles composed of 4:1 DLPC:DHexPC, 4:1:0.2 DLPC:DHexPC:cholesterol, 4:1:0.13 DLPC:DHexPC:CTAB, 4:1:0.13:0.2 DLPC:DHexPC:CTAB:cholesterol, and 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate. The amount of cholesterol-3-sulfate used was based on mole percent and was varied in order to determine the optimal amount. Our results indicate that the presence of 75 w% or more water is essential to achieve maximum magnetic-alignment, while the presence of cholesterol and cholesterol-3-sulfate stabilize the alignment at extreme temperatures and the positively charged CTAB avoids the mixing of bicelles. We believe that the use of magnetically-aligned 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate bicelles at as low as -15 °C would pave avenues to study the structure, dynamics, and membrane orientation of heat-sensitive proteins such as cytochrome-P450 and could also be useful to investigate protein-protein interactions in a membrane environment.


PMID: 24460179 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Shortening spin–lattice relaxation using a copper-chelated lipid at low-temperatures – A magic angle spinning solid-state NMR study on a membrane-bound protein
From The DNP-NMR Blog: Shortening spin–lattice relaxation using a copper-chelated lipid at low-temperatures – A magic angle spinning solid-state NMR study on a membrane-bound protein Yamamoto, K., et al., Shortening spin–lattice relaxation using a copper-chelated lipid at low-temperatures – A magic angle spinning solid-state NMR study on a membrane-bound protein. J. Magn. Reson., 2013. 237(0): p. 175-181. http://dx.doi.org/10.1016/j.jmr.2013.10.017
nmrlearner News from NMR blogs 0 12-17-2013 12:56 AM
[NMR paper] Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein.
Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein. Related Articles Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein. J Magn Reson. 2013 Nov 1;237C:175-181 Authors: Yamamoto K, Caporini MA, Im S, Waskell L, Ramamoorthy A Abstract Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to...
nmrlearner Journal club 0 11-20-2013 12:52 PM
[NMR paper] Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein
Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein Publication date: Available online 1 November 2013 Source:Journal of Magnetic Resonance</br> Author(s): Kazutoshi Yamamoto , Marc Caporini , Sangchoul Im , Lucy Waskell , Ayyalusamy Ramamoorthy</br> Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing...
nmrlearner Journal club 0 11-01-2013 03:48 AM
A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles
A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles Abstract Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the â??shotgunâ?? approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched...
nmrlearner Journal club 0 09-17-2012 02:05 AM
[Question from NMRWiki Q&A forum] SSNMR 2H wideline probe that can access sample temperatures in the range of 20-150 K?
SSNMR 2H wideline probe that can access sample temperatures in the range of 20-150 K? Is anyone aware of NMR facilites, which possess a SSNMR equipped with a 2H wideline probe that can access sample temperatures in the range of 20-150 K? Many thanks in advance, Cortnie Vogelsberg
nmrlearner News from other NMR forums 0 04-29-2011 04:30 AM
[NMR paper] 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of
15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. Related Articles 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. J Magn Reson. 2005 Apr;173(2):322-7 Authors: Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI This communication reports the first...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing ch
A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Related Articles A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Chem Phys Lipids. 2004 Nov;132(1):55-64 Authors: Minto RE, Adhikari PR, Lorigan GA Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lantha
Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Related Articles Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Biochem Cell Biol. 1998;76(2-3):443-51 Authors: Prosser RS, Volkov VB, Shiyanovskaya IV The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:30 PM.


Map