BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-03-2011, 12:34 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Bayesian estimation of NMR restraint potential and weight: A validation on a representative set of protein structures.

Bayesian estimation of NMR restraint potential and weight: A validation on a representative set of protein structures.

Bayesian estimation of NMR restraint potential and weight: A validation on a representative set of protein structures.

Proteins. 2011 Jan 6;

Authors: Bernard A, Vranken WF, Bardiaux B, Nilges M, Malliavin TE

The classical procedure for nuclear magnetic resonance structure calculation allocates empirical distance ranges and uses historical values for weighting factors. However, Bayesian analysis suggests that there are more optimal choices for potential shape (bounds-free log-harmonic shape) and restraints weights. We compare the classical protocol with the Bayesian approach for more than 300 protein structures. We analyze the conformation similarity to the corresponding X-ray crystal structure, the distribution of the conformations around their average, and independent validation criteria. On average, the log-harmonic potential reduces the difference to the X-ray crystal structure. If the log-harmonic potential is used, the constant weighting tightens the distribution around the average conformation, with respect to the distributions obtained with Bayesian weighting. Conversely, the structure quality is improved by the Bayesian weighting over the classical procedure, whereas constant weighting worsens some criteria. The quality improvement obtained with the log-harmonic potential coupled to Bayesian weighting validates this approach on a representative set of protein structures. Proteins 2011. © 2011 Wiley-Liss, Inc.

PMID: 21365680 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from
NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis. Related Articles NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis. J Biomol NMR. 2005 Apr;31(4):363 Authors: Xu H, Zhang P, Jin C
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Rapid assessment of protein structural stability and fold validation via NMR.
Rapid assessment of protein structural stability and fold validation via NMR. Related Articles Rapid assessment of protein structural stability and fold validation via NMR. Methods Enzymol. 2005;394:142-75 Authors: Hoffmann B, Eichmüller C, Steinhauser O, Konrat R In structural proteomics, it is necessary to efficiently screen in a high-throughput manner for the presence of stable structures in proteins that can be subjected to subsequent structure determination by X-ray or NMR spectroscopy. Here we illustrate that the (1)H chemical...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Sorting signals from protein NMR spectra: SPI, a Bayesian protocol for uncovering spi
Sorting signals from protein NMR spectra: SPI, a Bayesian protocol for uncovering spin systems. Related Articles Sorting signals from protein NMR spectra: SPI, a Bayesian protocol for uncovering spin systems. J Biomol NMR. 2002 Nov;24(3):203-13 Authors: Grishaev A, Llinás M Grouping of spectral peaks into J-connected spin systems is essential in the analysis of macromolecular NMR data as it provides the basis for disentangling chemical shift degeneracies. It is a mandatory step before resonance and NOESY cross-peak identities can be...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monom
Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. Related Articles Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. J Mol Biol. 2002 Sep 6;322(1):137-52 Authors: Akerud T, Thulin E, Van Etten RL, Akke M Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Improving the accuracy of NMR structures of DNA by means of a database potential of m
Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions. Related Articles Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions. J Am Chem Soc. 2001 May 2;123(17):3903-18 Authors: Kuszewski J, Schwieters C, Clore GM NMR structure determination of nucleic acids presents an intrinsically difficult problem since the density of short interproton distance contacts is relatively low...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Validity of using the radius of gyration as a restraint in NMR protein structure dete
Validity of using the radius of gyration as a restraint in NMR protein structure determination. Related Articles Validity of using the radius of gyration as a restraint in NMR protein structure determination. J Am Chem Soc. 2001 Apr 25;123(16):3834-5 Authors: Huang X, Powers R
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP) Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP) J Biomol NMR. 2000 Jan;16(1):79-80 Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ
nmrlearner Journal club 0 11-18-2010 09:15 PM
Validation of NMR-derived protein structures, Chris Spronk
Here's a good PowerPoint presentation by Chris Spronk (University of Nijmegen, The Netherlands) on the subject of validating NMR protein structure results (adapted by Jurgen F. Doreleijers - University of Wisconsin, Madison, USA) http://tang.bmrb.wisc.edu/~jurgen/presents/Madison/Biochem%20801/NMR_validation_biochem801_2005.ppt The presentation is very well-annotated, so be sure to adjust your view in PowerPoint so that you can see the notes.
jen Educational web pages 0 09-02-2008 05:37 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:10 PM.


Map