Related ArticlesThe basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared and NMR study.
Eur J Biochem. 1995 Jul 15;231(2):370-80
Authors: Krebs D, Dahmani B, el Antri S, Monnot M, Convert O, Mauffret O, Troalen F, Fermandjian S
The structural properties of the basic subdomain of the basic zipper (bZIP) protein c-Jun were examined by joint means of 1H-NMR, CD and Fourier-transform infrared (FTIR) spectroscopies. The basic subdomain (residues 252-281 in c-Jun) is responsible for sequence-specific recognition of DNA. A modified basic subdomain bSD (residues 1-35) and its N-terminal part and C-terminal part fragments (NP, residues 1-19; and, CP, residues 16-35) were prepared by solid-phase synthesis and purified by HPLC. In aqueous solution, in the absence of DNA, bSD behaved mostly as an unstructured peptide characterized by only 5% alpha helix. However, upon mixing bSD and a specific DNA fragment, i.e. a CRE(cAMP-responsive element)-containing hexadecanucleotide, the alpha helix was stabilized to an extent of 20% at 20 degrees C or 35% at 2 degrees C. At the same time, no significant change could be detected in the DNA spectra. Addition of trifluoroethanol to an aqueous bSD sample resulted in an increase of the alpha-helix content so that about 60% of alpha helix was found at a ratio of 75% trifluoroethanol (20 degrees C). These effects were reflected in both CD and FTIR measurements. Changes shown by the CD spectra during the process suggested a mechanism dominated by a two-state helix/unordered transition. NMR data, namely alpha H chemical shifts, NOE cross-peaks and NH temperature coefficients provided indications for extended or nascent helix structures within four short stretches dispersed along the sequence for c-Jun bSD, contrasting with the unique and continuous stretch reported for Gcn4 (yeast general control protein 4) bSD in aqueous solution. Trifluoroethanol stabilized the alpha-helix structure mainly at these four sites. The malleability of the basic subdomain of c-Jun was emphasized in relation to its ability to fit the DNA helix in adopting an alpha-helix structure. The complex formation apparently requires substantial conformational change from the peptide and only little from the oligonucleotide.
[NMR paper] G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment
G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment.
Related Articles G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9642-7
Authors: Atreya HS, Szyperski T
A G-matrix Fourier transform (GFT) NMR spectroscopy-based strategy for resonance assignment of proteins is described. Each of the GFT NMR experiments presented here rapidly affords four-, five-, or six-dimensional spectral information in combination with precise...
[NMR paper] Dissection of the basic subdomain of the c-Jun oncoprotein: a structural analysis of
Dissection of the basic subdomain of the c-Jun oncoprotein: a structural analysis of two peptide fragments by CD, Fourier-transform infrared and NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Dissection of the basic subdomain of the c-Jun oncoprotein: a structural analysis of two peptide fragments by CD, Fourier-transform infrared and NMR.
Eur J Biochem. 1996 Feb 1;235(3):699-712
Authors: Krebs D, Dahmani B, Monnot M, Mauffret O,...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR
Abstract Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in...