Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.Tube map revealed: Non-uniform sparse sampling as low as 2 % allowed the introduction of a four-dimensional assignment strategy for proton-detected solid-state NMR. A complex, large bacteriophage tail-tube assembly was successfully studied by using this new approach.
[NMR paper] Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR.
Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR.
Related Articles Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR.
Angew Chem Int Ed Engl. 2017 Jun 23;:
Authors: Zinke M, Fricke P, Samson C, Hwang S, Wall J, Lange S, Zinn-Justin S, Lange A
Abstract
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the...
nmrlearner
Journal club
0
06-24-2017 08:20 PM
[NMR paper] Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
Bacteriophage Tail Tube Assembly Studied by Proton-Detected 4D Solid-State NMR
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen...
nmrlearner
Journal club
0
06-23-2017 04:36 PM
[NMR] ultra fast-MAS proton-detected solid-state NMR
From The DNP-NMR Blog:
ultra fast-MAS proton-detected solid-state NMR
PhD students and postdocs in ultra fast-MAS proton-detected solid-state NMR
The group of Prof. Dr. Rasmus Linser at the Ludwig-Maximilians-University in Munich, Germany, is looking for additional group members in the field of ultra fast-MAS bio-NMR.
Our focus is the characterization of protein structure, dynamics and interactions, using both solution and solid-state NMR spectroscopy. In the past, we have committed ourselves to the development of innovative NMR methodology as well as application of new and...
[NMR paper] Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy
Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy
Publication date: Available online 26 October 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Sang Ho Park , Chen Yang , Stanley J. Opella , Leonard J. Mueller</br>
Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous...
nmrlearner
Journal club
0
10-27-2013 12:53 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-16-2011 12:29 PM
A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination.
A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination.
A Proton-Detected 4D Solid-State NMR Experiment for Protein Structure Determination.
Chemphyschem. 2011 Apr 4;12(5):915-8
Authors: Huber M, Hiller S, Schanda P, Ernst M, Böckmann A, Verel R, Meier BH