J-domain proteins (JDPs) are essential cochaperones of heat shock protein 70 (Hsp70), as they bind and deliver misfolded polypeptides while also stimulating ATPase activity, thereby mediating the refolding process and assisting Hsp70 in maintaining cellular proteostasis. Despite their importance, detailed structural information about JDP-Hsp70 complexes is still being explored due to various technical challenges. One major challenge is the lack of more detailed structural data on full-length...
Uniform [13C,15N]-labeled and glycosylated IgG1 Fc expressed in Saccharomyces cerevisiae
Uniform -labeled and glycosylated IgG1 Fc expressed in Saccharomyces cerevisiae
Abstract
Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is...
nmrlearner
Journal club
0
11-22-2023 06:07 AM
[NMR paper] (1)H, (13)C and (15)N chemical shift assignments of Saccharomyces cerevisiae type 1 thioredoxin in the oxidized state by solution NMR spectroscopy.
(1)H, (13)C and (15)N chemical shift assignments of Saccharomyces cerevisiae type 1 thioredoxin in the oxidized state by solution NMR spectroscopy.
Related Articles (1)H, (13)C and (15)N chemical shift assignments of Saccharomyces cerevisiae type 1 thioredoxin in the oxidized state by solution NMR spectroscopy.
Biomol NMR Assign. 2017 Aug 14;:
Authors: Iqbal A, Almeida FCL
Abstract
Thioredoxins (Trx) are ubiquitous proteins that regulate several biochemical processes inside the cell. Trx is an important player, displaying...
nmrlearner
Journal club
0
08-17-2017 01:01 PM
[NMR paper] NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae.
NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae.
NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae.
Biomol NMR Assign. 2016 Feb 20;
Authors: Shukla VK, Singh JS, Trivedi D, Hosur RV, Kumar A
Abstract
Cyclophilins regulate protein folding, transport and signalling through catalysis of proline isomerization, and are ubiquitously expressed in both prokaryotes and eukaryotes. Cpr3 is the yeast mitochondrial cyclophilin and it is structurally and biophysically...
nmrlearner
Journal club
0
02-22-2016 12:44 PM
[NMR paper] Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.
Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.
Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.
Biomol NMR Assign. 2013 Aug 7;
Authors: Wurm JP, Lioutikov A, Kötter P, Entian KD, Wöhnert J
Abstract
The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost...
nmrlearner
Journal club
0
08-08-2013 03:46 PM
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
J Bioenerg Biomembr. 2011 Mar 12;
Authors: Rishikesan S, Thaker YR, Grüber G
The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner
Journal club
0
03-15-2011 04:06 PM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biochemistry. 2005 Sep 6;44(35):11795-810
Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F
The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)
Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR.
Related Articles Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR.
FEBS Lett. 2000 Sep 29;482(1-2):25-30
Authors: Szabo CM, Sanders LK, Le HC, Chien EY, Oldfield E
We have expressed -labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
J Mol Biol. 1999 Aug 20;291(3):661-9
Authors: Evans SP, Bycroft M
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...