Related ArticlesBackbone dynamics of membrane proteins in lipid bilayers: the effect of two-dimensional array formation as revealed by site-directed solid-state 13C NMR studies on [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin.
Biochim Biophys Acta. 2003 Oct 13;1616(2):127-36
Authors: Saitô H, Yamamoto K, Tuzi S, Yamaguchi S
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane alpha-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 10(4)-10(5) Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 degrees C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
nmrlearner
Journal club
0
10-10-2011 06:27 AM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
J Am Chem Soc. 2011 Mar 14;
Authors: Yang J, Aslimovska L, Glaubitz C
Environmental factors such as temperature, hydration, and lipid bilayer properties are tightly coupled to the dynamics of membrane proteins. So far, site-resolved data visualizing the protein's response to alterations in these factors are rare, and conclusions had to be drawn from dynamic data averaged over the whole protein...
nmrlearner
Journal club
0
03-16-2011 04:15 PM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Jun Yang, Lubica Aslimovska and Clemens Glaubitz
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109766n/aop/images/medium/ja-2010-09766n_0011.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109766n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/VmNlca5pCIw
nmrlearner
Journal club
0
03-15-2011 05:56 AM
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Biophys J. 2010 Nov 17;99(10):3282-9
Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
[NMR paper] Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers.
Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers.
Related Articles Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers.
Mol Membr Biol. 2005 Jul-Aug;22(4):353-61
Authors: Hughes E, Middleton DA
Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells via a reversible inhibitory interaction with Ca2+-ATPase. In this work...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and d
Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR.
Related Articles Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR.
Chem Phys Lipids. 2004 Nov;132(1):101-12
Authors: Saitô H
We have compared site-directed 13C solid-state NMR spectra of Ala- and/or Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate...
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Biochemistry. 2010 Aug 30;
Authors: Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM
Nanodiscs are an example of discoidal nanoscale lipid/protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical...