The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic melanoma stages III and IV. Here, we report the backbone dynamics of human MIA studied by (15)N NMR relaxation experiments. The folded core of human MIA is found to be rigid, but several loops connecting beta-sheets, such as the RT-loop for example, display increased mobility on picosecond to nanosecond time scales. One of the most important dynamic features is the pronounced flexibility of the distal loop, comprising residues Asp 68 to Ala 75, where motions on time scales up to milliseconds occur. Further, significant exchange contributions are observed for residues of the canonical binding site of SH3 domains including the RT-loop, the n-Src loop, for the loop comprising residues 13 to 19, which we refer to as the"disulfide loop", in part for the distal loop, and the carboxyl terminus of human MIA. The functional importance of this dynamic behavior is discussed with respect to the biological activity of several point mutations of human MIA. The results of this study suggest that the MIA protein and the recently identified highly homologous fibrocyte-derived protein (FDP)/MIA-like (MIAL) constitute a new family of secreted proteins that adopt an SH3 domain-like fold in solution with expanded ligand interactions.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Top Curr Chem. 2011 Sep 7;
Authors: Ishima R
Abstract
Nuclear Magnetic Resonance (NMR) relaxation is a powerful technique that provides information about internal dynamics associated with configurational energetics in proteins, as well as site-specific information involved in conformational equilibria. In particular, (15)N relaxation is a useful probe to...
nmrlearner
Journal club
0
09-08-2011 06:50 PM
[NMR paper] Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Related Articles Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Biochemistry. 2005 Jul 19;44(28):9673-9
Authors: Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL
Nuclear magnetic resonance (NMR) (15)N relaxation measurements of the olfactory marker protein (OMP) including longitudinal relaxation (T(1)), transverse relaxation (T(2)), and (15)N-{(1)H} NOE data were collected at low...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
FEBS J. 2010 Sep 3;
Authors: Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R
PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by...
nmrlearner
Journal club
0
09-10-2010 11:53 PM
[NMR paper] Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Related Articles Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Biochemistry. 1995 Apr 18;34(15):5212-23
Authors: Zheng Z, Czaplicki J, Jardetzky O
Backbone dynamics of trp repressor, a 25 kDa DNA binding protein, have been studied using 15N relaxation data measured by proton-detected two-dimensional 1H-15N NMR spectroscopy. 15N spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and heteronuclear NOEs were determined for all visible backbone...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectr
Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
Eur J Biochem. 1994 Feb 1;219(3):887-96
Authors: Orekhov VYu , Pervushin KV, Arseniev AS
The backbone dynamics of a uniformly 15N-labelled proteolytic fragment (residues 1-71) of bacteriorhodopsin,...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N
Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR.
FEBS Lett. 1993 Dec 28;336(3):457-61
Authors: Constantine KL, Friedrichs MS, Bell AJ, Lavoie TB, Mueller L, Metzler WJ
The dynamic properties of 111 backbone HN sites in uncomplexed human profilin, a protein of 139 residues, have been...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the unc
15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor.
Related Articles 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor.
Biochemistry. 1993 Sep 7;32(35):9000-10
Authors: Cheng JW, Lepre CA, Chambers SP, Fulghum JR, Thomson JA, Moore JM
Backbone dynamics of the major tacrolimus (FK506) binding protein (FKBP-12, 107 amino acids) have been studied using 15N relaxation data derived from proton-detected two-dimensional 1H-15N NMR spectroscopy....
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spe
Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy.
J Magn Reson. 1999 Jun;138(2):244-55
Authors: Krushelnitsky A, Reichert D, Hempel G, Fedotov V, Schneider H, Yagodina L, Schulga A
Superslow backbone dynamics of the protein barstar and the polypeptide polyglycine was studied by...