Related ArticlesBackbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA methylphosphotriester repair domain of Escherichia coli Ada using NMR.
The 10kDa amino-terminal fragment of Escherichia coli Ada protein (N-Ada10) repairs methyl phosphotriesters in DNA and possesses a tightly bound zinc ion. The complete resonance assignments of this protein domain have been obtained using multidimensional homonuclear and heteronuclear NMR experiments. The assignments served to study the internal mobility of this protein domain via 15N relaxation experiments. This involved the measurement of longitudinal and transverse 15N relaxation rates, as well as the amide proton solvent exchange rates. Relaxation rates in the rotating frame, R1 rho, of 15N nuclei were measured at different spin-lock field strengths, leading to the detection of two slow conformational exchange processes at Gly-25 and Gln-73. For the latter, which is next to the active site of this protein domain, the characteristic time of this process was found to be around 60 microseconds. The other relaxation experiments unveiled some regions of fast internal motions, faster than the overall correlation time. These motions were found in the N- and C- terminal tails, in segment 33-35 which forms the turn between beta-strands S1 and S2, and residues 47-52 located in a long loop preceding strand S3. The latter loop belongs to the potential DNA binding surface of N-Ada10. While the structure from residue 18 to residue 26 appears not well defined in the calculated structure, the relaxation experiments do not indicate higher mobility for this region. Residues at the N-terminal portion, including the first helix, the sequentially adjacent loop, and part of the second helix, exhibit internal motions close to the time scale of the overall rotational correlation time. This appears to be related to the fact that the first helix has no hydrogen bonds or salt bridges to the rest of the protein and is stabilized only by the involvement of some of its side chains in a hydrophobic core consisting of the side chains of two phenylalanines, a tryptophan, a leucine, and a valine. The four cysteines which bind the zinc show motions on different time scales ranging from microseconds to picoseconds. Thus the motions in the immediate region around the bound zinc of the DNA methyl phosphotriester repair domain are of relatively small amplitude but take place over a wide time range. On the other hand, high mobility is found in the turn connecting S1 and S2 and in the loop preceding S3, regions of the potential DNA binding surface.
Measurement of amide hydrogen exchange rates with the use of radiation damping
Measurement of amide hydrogen exchange rates with the use of radiation damping
Abstract A simple method for measuring amide hydrogen exchange rates is presented, which is based on the selective inversion of water magnetization with the use of radiation damping. Simulations show that accurate exchange rates can be measured despite the complications of radiation damping and cross relaxation to the exchange process between amide and water protons. This method cannot eliminate the contributions of the exchange-relayed NOE and direct NOE to the measured exchange rates, but minimize the...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
[NMR paper] Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H N
Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra.
Related Articles Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra.
Protein Sci. 2000 Jan;9(1):186-93
Authors: Cavagnero S, Thériault Y, Narula SS, Dyson HJ, Wright PE
The hydrogen exchange behavior of exchangeable protons in proteins can provide important information for understanding the principles of protein structure and function. The positions and exchange rates of the slowly-exchanging amide...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy
Abstract We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15Nâ??T 1 timescales). We observed chemical exchange for 6...
nmrlearner
Journal club
0
10-27-2010 08:51 AM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy.
Related Articles Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy.
J Biomol NMR. 2010 Oct 20;
Authors: Del Amo JM, Fink U, Reif B
We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that...
nmrlearner
Journal club
0
10-22-2010 06:02 AM
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of t
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of the Tryptophan Repressor Protein (TrpR): Comparison with the 15N NMR Relaxation Profiles of Wild-Type and A77V Mutant Apo-TrpR Repressors
http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100508u/aop/images/medium/bi-2010-00508u_0005.gifBiochemistry, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable).
More...
nmrlearner
Journal club
0
08-31-2010 10:50 PM
[NMR paper] Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mas
Human recombinant FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Human recombinant FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR.
Protein Sci. 1997 Oct;6(10):2203-17
...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of t
Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors.
Related Articles Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors.
Biochemistry. 2010 Aug 18;
Authors: Goel A, Tripet BP, Tyler RC, Nebert LD, Copie V
...
nmrlearner
Journal club
0
08-21-2010 01:02 AM
Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin
Abstract We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse Câ?²/Câ?²-Cα CSA/dipolar and Câ?²/Câ?²â??N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that Câ?² relaxation reports on a different subset of fast motions compared to those...