Related ArticlesBackbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements.
Eur J Biochem. 1996 Feb 1;235(3):629-40
Authors: Remerowski ML, Pepermans HA, Hilbers CW, Van De Ven FJ
Backbone dynamics of Savinase, a subtilisin of 269 residues secreted by Bacillus lentus, have been studied using 15N relaxation measurements derived from proton-detected dimensional 1H-15N-NMR spectroscopy. 15N spin-lattice rate constants (R1), spin-spin relaxation-rate constants(R2), and 1H-15N nuclear Overhauser effects (NOE) were determined for 84% of the backbone amide 15N nuclei. The model-free formalism [Lipari, G. & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559] was used to derive values for a generalized order parameter, S2, interpretable as a measure of the amplitude of motion on the picosecond-nanosecond timescale, for each N-H bond vector. Additional terms used to fit the data include an effective correlation time for internal motions (taue) and an exchange term (Rex) to account for exchange contributions to R2. The overall rotational correlation time (taum) is 9.59 +/- 0.02 ns; the average order parameter (S2) is 0.90 +/- 0.07, indicative of a rigid structure consistent with Savinase's high degree of secondary structure and compact tertiary fold. Residues S125-S128, located in the substrate-binding region, represent the longest stretch of protein which exhibits disorder on the picosecond-nanosecond timescale. These residues also exhibit significant exchange terms, possibly indicative of motion on the microsecond-millisecond timescale, which could also be influenced by the proximity of the phenyl ring of the substituted aryl boronic acid inhibitor used in this study. S103 and G219 in the substrate-binding region, represent the longest stretch of protein which exhibits disorder on the picosecond-nanosecond timescale. These residues also exhibit significant exchange terms, possibly indicative of motion on the microsecond-millisecond timescale, which could also be influenced by the proximity of the phenyl ring of the substituted aryl boronic acid inhibitor used in this study. S103 and G219 in the substrate-binding region also show flexibility on the picosecond-nanosecond timescale. There is also significant motion in the turn, G258-T260, of a small solvent-exposed loop region which may make the protein vulnerable autolysis at that point. Some residues in both calcium-binding sites and nearby also show mobility.
Local protein backbone folds determined by calculated NMR chemical shifts.
Local protein backbone folds determined by calculated NMR chemical shifts.
Local protein backbone folds determined by calculated NMR chemical shifts.
J Comput Chem. 2011 Sep 9;
Authors: Czajlik A, Hudáky I, Perczel A
Abstract
NMR chemical shifts (CSs: ?N(NH) , ?C(?) , ?C(?) , ?C', ?H(NH) , and ?H(?) ) were computed for the amino acid backbone conformers (?(L) , ?(L) , ?(L) , ?(L) , ?(L) , ?(D) , ?(D) , ?(D) , and ?(D) ) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single ?-strands,...
nmrlearner
Journal club
0
09-10-2011 06:51 PM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Tomasz L. Religa, Amy M. Ruschak, Rina Rosenzweig and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202259a/aop/images/medium/ja-2011-02259a_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja202259a
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/rQfCMlQFoW8
nmrlearner
Journal club
0
05-20-2011 09:17 PM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
J Am Chem Soc. 2011 May 11;
Authors: Religa TL, Ruschak AM, Rosenzweig R, Kay LE
Methyl groups are powerful reporters of structure, motion and function in NMR studies of supra-molecular protein assemblies. Their...
nmrlearner
Journal club
0
05-12-2011 03:40 PM
[NMR paper] Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR
Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation.
Related Articles Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation.
Biochemistry. 2001 Mar 27;40(12):3439-48
Authors: Inman KG, Baldisseri DM, Miller KE, Weber DJ
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N- NOE were measured for 80 of 91 backbone...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue p
1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus.
Related Articles 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus.
J Biomol NMR. 1994 Mar;4(2):257-78
Authors: Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ
1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease
Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study.
Related Articles Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study.
Biochemistry. 1994 Feb 8;33(5):1063-72
Authors: Alexandrescu AT, Abeygunawardana C, Shortle D
A partially folded form of staphylococcal nuclease has been obtained by deleting residues 4-12 and 141-149 of the 149-residue wild-type protein. Sequence-specific NMR resonance assignments have been obtained...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue p
1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus.
Related Articles 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus.
J Biomol NMR. 1994 Mar;4(2):257-78
Authors: Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ
1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease
Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study.
Related Articles Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study.
Biochemistry. 1994 Feb 8;33(5):1063-72
Authors: Alexandrescu AT, Abeygunawardana C, Shortle D
A partially folded form of staphylococcal nuclease has been obtained by deleting residues 4-12 and 141-149 of the 149-residue wild-type protein. Sequence-specific NMR resonance assignments have been obtained...