Related ArticlesBackbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning.
Nat Protoc. 2017 Apr;12(4):764-782
Authors: Fricke P, Chevelkov V, Zinke M, Giller K, Becker S, Lange A
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, (1)H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional (13)C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by (1)H-detected ssNMR. It requires a perdeuterated, uniformly (13)C- and (15)N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
[NMR paper] A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.
A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions.
Sci Rep. 2015;5:11810
...
nmrlearner
Journal club
0
08-03-2016 04:58 AM
[NMR paper] Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Related Articles Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
J Magn Reson. 2015 Nov 9;261:149-156
Authors: Mote KR, Madhu PK
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Publication date: Available online 9 November 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Kaustubh R. Mote, Perunthiruthy K. Madhu</br>
1 H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1 H- 1 H dipolar coupled network that...
nmrlearner
Journal club
0
11-10-2015 09:10 AM
[NMR paper] Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
Methods Enzymol. 2015;557:307-328
Authors: Baker LA, Folkers GE, Sinnige T, Houben K, Kaplan M, van der Cruijsen EA, Baldus M
Abstract
Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging...
nmrlearner
Journal club
0
05-08-2015 09:18 PM
Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR
From The DNP-NMR Blog:
Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR
A large portion of the magnetization in a CP experiment remains unused after an experiment and different strategies exist to make better use of the proton magnetization. Here the authors show their results of testing 7 different cp schemes. Although not directly related to DNP these techniques are still very valuable to increase the sensitivity of an NMR experiment especially in combination with DNP.
nmrlearner
News from NMR blogs
0
03-30-2015 06:04 PM
Recent advances in magic angle spinning solid state NMR of membrane proteins
From The DNP-NMR Blog:
Recent advances in magic angle spinning solid state NMR of membrane proteins
Wang, S. and V. Ladizhansky, Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog. NMR. Spec., 2014. 82(0): p. 1-26.
http://www.sciencedirect.com/science/article/pii/S0079656514000478
nmrlearner
News from NMR blogs
0
08-29-2014 05:36 PM
[NMR paper] Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
J Am Chem Soc. 2014 Aug 7;
Authors: Barbet-Massin E, Pell AJ, Retel J, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman VA, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G
Abstract
...
nmrlearner
Journal club
0
08-08-2014 01:45 PM
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy
Abstract We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D2O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both 1H and 15N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for 1Hâ??15N correlations in dipolar coupling based experiments for...