BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Axial ligand modulation of the electronic structures of binuclear copper sites: analy

Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).

Related Articles Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).

J Am Chem Soc. 2001 Nov 28;123(47):11678-85

Authors: Fernández CO, Cricco JA, Slutter CE, Richards JH, Gray HB, Vila AJ

Cu(A) is an electron-transfer copper center present in heme-copper oxidases and N2O reductases. The center is a binuclear unit, with two cysteine ligands bridging the metal ions and two terminal histidine residues. A Met residue and a peptide carbonyl group are located on opposite sides of the Cu2S2 plane; these weaker ligands are fully conserved in all known Cu(A) sites. The Met160Gln mutant of the soluble subunit II of Thermus thermophilus ba3 oxidase has been studied by NMR spectroscopy. In its oxidized form, the binuclear copper is a fully delocalized mixed-valence pair, as are all natural Cu(A) centers. The faster nuclear relaxation in this mutant suggests that a low-lying excited state has shifted to higher energies compared to that of the wild-type protein. The introduction of the Gln residue alters the coordination mode of His114 but does not affect His157, thereby confirming the proposal that the axial ligand-to-copper distances influence the copper-His interactions (Robinson, H.; Ang, M. C.; Gao, Y. G.; Hay, M. T.; Lu, Y.; Wang, A. H. Biochemistry 1999, 38, 5677). Changes in the hyperfine coupling constants of the Cys beta-CH2 groups are attributed to minor geometrical changes that affect the Cu-S-C(beta)-H(beta) dihedral angles. These changes, in addition, shift the thermally accessible excited states, thus influencing the spectral position of the Cys beta-CH2 resonances. The Cu-Cys bonds are not substantially altered by the Cu-Gln160 interaction, in contrast to the situation found in the evolutionarily related blue copper proteins. It is possible that regulatory subunits in the mitochondrial oxidases fix the relative positions of thermally accessible Cu(A) excited states by tuning axial ligand interactions.

PMID: 11716725 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains.
A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. Related Articles A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. J Biol Chem. 2005 Nov 18;280(46):38259-63 Authors: Banci L, Bertini I, Cantini F, Chasapis CT, Hadjiliadis N, Rosato A ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal tail protruding into the cytosol and containing six...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR stu
Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. Related Articles Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. J Biol Inorg Chem. 2003 Jan;8(1-2):75-82 Authors: Fernández CO, Niizeki T, Kohzuma T, Vila AJ Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)
Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. Related Articles Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. J Am Chem Soc. 2002 Nov 20;124(46):13698-708 Authors: Donaire A, Jiménez B, Fernández CO, Pierattelli R, Niizeki T, Moratal JM, Hall JF, Kohzuma T, Hasnain SS, Vila AJ The blue copper proteins (BCPs), pseudoazurin from Achromobacter cycloclastes and rusticyanin from Thiobacillus...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Spatial localization of ligand binding sites from electron current density surfaces c
Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. Related Articles Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J Am Chem Soc. 2002 Oct 2;124(39):11758-63 Authors: McCoy MA, Wyss DF Rapid, accurate structure determination of protein-ligand complexes is an essential component in structure-based drug design. We have developed a method that uses NMR protein chemical shift...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Electronic characterization of the oxidized state of the blue copper protein rusticya
Electronic characterization of the oxidized state of the blue copper protein rusticyanin by 1H NMR: is the axial methionine the dominant influence for the high redox potential? Related Articles Electronic characterization of the oxidized state of the blue copper protein rusticyanin by 1H NMR: is the axial methionine the dominant influence for the high redox potential? Biochemistry. 2001 Jan 23;40(3):837-46 Authors: Donaire A, Jiménez B, Moratal J, Hall JF, Hasnain SS The oxidized state of rusticyanin, the blue copper protein with the highest...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analy
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Related Articles Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Biochem Biophys Res Commun. 2010 Oct 11; Authors: Shi P, Xi Z, Wang H, Shi C, Xiong Y, Tian C SH3 is a ubiquitous domain mediating protein-protein interactions....
nmrlearner Journal club 0 10-16-2010 03:56 PM
[NMR paper] Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and p
Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. ...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and p
Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. ...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:44 PM.


Map