BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2018, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Automatic 13 C chemical shift reference correction for unassigned protein NMR spectra

Automatic 13 C chemical shift reference correction for unassigned protein NMR spectra

Abstract

Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR, including protein structure determination and analysis of protein dynamics. To solve this problem, we constructed a Bayesian probabilistic framework that circumvents the limitations of previous reference correction methods that required protein resonance assignment and/or three-dimensional protein structure. Our algorithm named Bayesian Model Optimized Reference Correction (BaMORC) can detect and correct 13C chemical shift referencing errors before the protein resonance assignment step of analysis and without three-dimensional structure. By combining the BaMORC methodology with a new intra-peaklist grouping algorithm, we created a combined method called Unassigned BaMORC that utilizes only unassigned experimental peak lists and the amino acid sequence. Unassigned BaMORC kept all experimental three-dimensional HN(CO)CACB-type peak lists tested within ±â??0.4Â*ppm of the correct 13C reference value. On a much larger unassigned chemical shift test set, the base method kept 13C chemical shift referencing errors to within ±â??0.45Â*ppm at a 90% confidence interval. With chemical shift assignments, Assigned BaMORC can detect and correct 13C chemical shift referencing errors to within ±â??0.22Â*at a 90% confidence interval. Therefore, Unassigned BaMORC can correct 13C chemical shift referencing errors when it will have the most impact, right before protein resonance assignment and other downstream analyses are started. After assignment, chemical shift reference correction can be further refined with Assigned BaMORC. These new methods will allow non-NMR experts to detect and correct 13C referencing error at critical early data analysis steps, lowering the bar of NMR expertise required for effective protein NMR analysis.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra.
Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra. Related Articles Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra. J Magn Reson. 2017 Dec 28;287:91-98 Authors: Wang K, Zhang Z, Ding X, Tian F, Huang Y, Chen Z, Fu R Abstract The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete...
nmrlearner Journal club 0 01-14-2018 12:38 AM
[NMR paper] Spin-Echo based Diagonal Peak Suppression in Solid-State MAS NMR Homonuclear Chemical Shift Correlation Spectra
Spin-Echo based Diagonal Peak Suppression in Solid-State MAS NMR Homonuclear Chemical Shift Correlation Spectra Publication date: Available online 28 December 2017 Source:Journal of Magnetic Resonance</br> Author(s): Kaiyu Wang, Zhiyong Zhang, Xiaoyan Ding, Fang Tian, Yuqing Huang, Zhong Chen, Riqiang Fu</br> The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect...
nmrlearner Journal club 0 12-29-2017 09:03 PM
[NMR paper] The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.
The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins. Related Articles The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins. Angew Chem Int Ed Engl. 2016 Jun 10; Authors: Frach R, Kibies P, Böttcher S, Pongratz T, Strohfeldt S, Kurrmann S, Koehler J, Hofmann M, Kremer W, Kalbitzer HR, Reiser O, Horinek D, Kast SM Abstract High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for...
nmrlearner Journal club 0 06-11-2016 01:09 PM
[NMR paper] Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations. Phys Chem Chem Phys. 2014 Jul 23; Authors: Zhu T, Zhang JZ, He X Abstract In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated...
nmrlearner Journal club 0 07-24-2014 11:56 AM
[NMR paper] Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. J Biomol NMR. 2013 Apr 28; Authors: Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M Abstract We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic...
nmrlearner Journal club 0 04-30-2013 10:21 PM
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution Abstract Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each...
nmrlearner Journal club 0 06-06-2011 12:53 AM
[NMRwiki tweet] nmrwiki: Is it feasible to use Guanidinium as chemical shift reference in #nmr?http:/
nmrwiki: Is it feasible to use Guanidinium as chemical shift reference in #nmr?http://qa.nmrwiki.org/question/200/ nmrwiki: Is it feasible to use Guanidinium as chemical shift reference in #nmr?http://qa.nmrwiki.org/question/200/ Source: NMRWiki tweets
nmrlearner Twitter NMR 0 11-18-2010 06:16 PM
CheckShift: automatic correction of inconsistent chemical shift referencing
CheckShift: automatic correction of inconsistent chemical shift referencing Simon W. Ginzinger, Fabian Gerick, Murray Coles and Volker Heun Journal of Biomolecular NMR; 2007; 39(3); pp 223-227 Abstract: The construction of a consistent protein chemical shift database is an important step toward making more extensive use of this data in structural studies. Unfortunately, progress in this direction has been hampered by the quality of the available data, particularly with respect to chemical shift referencing, which is often either inaccurate or inconsistently annotated. Preprocessing of...
Deano Journal club 0 08-14-2008 09:57 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:30 AM.


Map