BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-22-2013, 04:43 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Automated solid-state NMR resonance assignment of protein microcrystals and amyloids.

Automated solid-state NMR resonance assignment of protein microcrystals and amyloids.

Related Articles Automated solid-state NMR resonance assignment of protein microcrystals and amyloids.

J Biomol NMR. 2013 May 21;

Authors: Schmidt E, Gath J, Habenstein B, Ravotti F, Székely K, Huber M, Buchner L, Böckmann A, Meier BH, Güntert P

Abstract
Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and ?-synuclein yielded 88-97*% correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90*% correctness if also assignments classified as tentative by the algorithm are included.


PMID: 23689812 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] (13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR.
(13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR. Related Articles (13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR. Chemphyschem. 2013 Apr 15; Authors: Barbet-Massin E, Pell AJ, Knight MJ, Webber AL, Felli IC, Pierattelli R, Emsley L, Lesage A, Pintacuda G Abstract We present two sequences which combine ((1) H,(15) N) and ((15) N,(13) C) selective cross-polarization steps with an efficient variant...
nmrlearner Journal club 0 04-17-2013 08:15 PM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner Journal club 0 10-13-2012 04:42 AM
13C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies
13C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies Antoine Loquet, Guohua Lv, Karin Giller, Stefan Becker and Adam Lange http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja200066s/aop/images/medium/ja-2011-00066s_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja200066s http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/aFxzgJtJWtI
nmrlearner Journal club 0 03-15-2011 05:56 AM
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies.
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies. Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies. J Am Chem Soc. 2010 Dec 16; Authors: Gossert AD, Hiller S, Ferna?ndez C The detection and structural characterization of protein-ligand interactions by solution NMR is central to functional biology research as well as to drug discovery. Here we present a robust and highly automated procedure for obtaining the resonance assignments necessary for studies of such...
nmrlearner Journal club 0 12-18-2010 12:00 PM
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies Alvar D. Gossert, Sebastian Hiller and Ce?sar Ferna?ndez http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108383x/aop/images/medium/ja-2010-08383x_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja108383x http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/E3PMYeBSCeE
nmrlearner Journal club 0 12-17-2010 12:50 AM
[NMR paper] Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector
Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector loop mutants: comparison between crystalline and solution state. Related Articles Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector loop mutants: comparison between crystalline and solution state. J Mol Biol. 2004 Sep 17;342(3):1033-40 Authors: Iuga A, Spoerner M, Kalbitzer HR, Brunner E Cycling between a GTP bound "on" state and a GDP bound "off" state, guanine nucleotide-binding (GNB) proteins act as molecular switches....
nmrlearner Journal club 0 11-24-2010 10:01 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of β1 immunoglobulin binding domain of protein G (GB1) Abstract Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the...
nmrlearner Journal club 0 10-15-2010 05:16 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1). Related Articles Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1). J Biomol NMR. 2010 Oct 8; Authors: Moseley HN, Sperling LJ, Rienstra CM Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for...
nmrlearner Journal club 0 10-12-2010 02:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:29 AM.


Map