BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain

Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.

Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment.

J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77

Authors: Li KB, Sanctuary BC

A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures the similarity between each detected spin pattern and 20 standard amino acid coupling patterns. Both chemical shift and topologically likeness are considered. The mapping algorithm uses the amino acid type information to direct detected polypeptides to proper position onto protein primary sequence. The assignment protocol can be applied to spin systems generated by many different approaches. We designed a few computer programs to derive a protein's backbone and side chain spin systems using heteronuclear 3D NMR. The results was then input to the sequential assignment protocol. All of the algorithms were tested on NMR data of a 90-residue N-domain of chicken skeletal troponin-C.

PMID: 9177001 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data Abstract One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY...
nmrlearner Journal club 0 06-27-2011 04:30 AM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. J Am Chem Soc. 2010 Dec 27; Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner Journal club 0 12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja107847d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner Journal club 0 12-28-2010 05:27 AM
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies.
Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies. Automated NMR Resonance Assignment of Large Proteins for Protein-Ligand Interaction Studies. J Am Chem Soc. 2010 Dec 16; Authors: Gossert AD, Hiller S, Ferna?ndez C The detection and structural characterization of protein-ligand interactions by solution NMR is central to functional biology research as well as to drug discovery. Here we present a robust and highly automated procedure for obtaining the resonance assignments necessary for studies of such...
nmrlearner Journal club 0 12-18-2010 12:00 PM
[NMR paper] Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts
Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Related Articles Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Protein Sci. 2003 Sep;12(9):2104-8 Authors: Liu W, Rumbley J, Englander SW, Wand AJ The mutant of horse heart cytochrome c was expressed in E. coli during growth on isotopically enriched minimal media. Complete resonance assignments of both the diamagnetic reduced (spin zero) and paramagnetic oxidized (spin (1/2))...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain
Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77 Authors: Li KB, Sanctuary BC A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures...
nmrlearner Journal club 0 08-22-2010 03:03 PM
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D -NOESY Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich Journal of Biomolecular NMR; 2008; 42(1); pp 23-33 Abstract ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved -NOESY spectra. ASCAN has also been...
Kirby Journal club 0 09-21-2008 11:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:16 AM.


Map