BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-21-2008, 11:52 PM
Junior Member
 
Join Date: Sep 2008
Posts: 2
Points: 24, Level: 1
Points: 24, Level: 1 Points: 24, Level: 1 Points: 24, Level: 1
Level up: 47%, 26 Points needed
Level up: 47% Level up: 47% Level up: 47%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 24
Downloads: 0
Uploads: 0
Default Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY

Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich
Journal of Biomolecular NMR; 2008; 42(1); pp 23-33

Abstract
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved [1H,1H]-NOESY spectra. ASCAN has also been laid out for the use of TOCSY-type data sets as supplementary input. The program assigns new resonances based on comparison of the NMR signals expected from the chemical structure with the experimentally observed NOESY peak patterns. The core parts of the algorithm are a procedure for generating expected peak positions, which is based on variable combinations of assigned and unassigned resonances that arise for the different amino acid types during the assignment procedure, and a corresponding set of acceptance criteria for assignments based on the NMR experiments used. Expected patterns of NOESY cross peaks involving unassigned resonances are generated using the list of previously assigned resonances, and tentative chemical shift values for the unassigned signals taken from the BMRB statistics for globular proteins. Use of this approach with the 101-amino acid residue protein FimD(25–125) resulted in 84% of the hydrogen atoms and their covalently bound heavy atoms being assigned with a correctness rate of 90%. Use of these side-chain assignments as input for automated NOE assignment and structure calculation with the ATNOS/CANDID/DYANA program suite yielded structure bundles of comparable quality, in terms of precision and accuracy of the atomic coordinates, as those of a reference structure determined with interactive assignment procedures. A rationale for the high quality of the ASCAN-based structure determination results from an analysis of the distribution of the assigned side chains, which revealed near-complete assignments in the core of the protein, with most of the incompletely assigned residues located at or near the protein surface.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Exclusively NOESY-based automated NMR assignment and structure determination of proteins
Exclusively NOESY-based automated NMR assignment and structure determination of proteins Abstract A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information. Applied to two small proteins, the approach yielded structures that coincided closely with conventionally determined structures. Content Type Journal Article Pages 1-10 DOI 10.1007/s10858-011-9502-8
nmrlearner Journal club 0 04-01-2011 09:31 PM
Exclusively NOESY-based automated NMR assignment and structure determination of proteins.
Exclusively NOESY-based automated NMR assignment and structure determination of proteins. Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR. 2011 Mar 30; Authors: Ikeya T, Jee JG, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information....
nmrlearner Journal club 0 03-31-2011 06:24 PM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR. 2010 Dec 18; Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner Journal club 0 12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner Journal club 0 12-21-2010 02:14 AM
[NMR paper] The NOESY jigsaw: automated protein secondary structure and main-chain assignment fro
The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. Related Articles The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J Comput Biol. 2000;7(3-4):537-58 Authors: Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR High-throughput, data-directed computational protocols for Structural Genomics (or Proteomics) are required in order to evaluate the protein products of genes for structure and...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain
Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77 Authors: Li KB, Sanctuary BC A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain
Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. Related Articles Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. J Chem Inf Comput Sci. 1997 May-Jun;37(3):467-77 Authors: Li KB, Sanctuary BC A sequential assignment protocol for proteins was developed using heteronuclear 3D NMR. The protocol consists of an amino acid type recognition algorithm and a primary sequence mapping algorithm. The former measures...
nmrlearner Journal club 0 08-22-2010 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:26 AM.


Map