BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 05:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemica

Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution.

Related Articles Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution.

Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71

Authors: Pervushin K, Riek R, Wider G, Wüthrich K

Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for suppression of transverse relaxation in multidimensional NMR experiments, which is based on constructive use of interference between DD coupling and CSA. For example, a TROSY-type two-dimensional 1H,15N-correlation experiment with a uniformly 15N-labeled protein in a DNA complex of molecular mass 17 kDa at a 1H frequency of 750 MHz showed that 15N relaxation during 15N chemical shift evolution and 1HN relaxation during signal acquisition both are significantly reduced by mutual compensation of the DD and CSA interactions. The reduction of the linewidths when compared with a conventional two-dimensional 1H,15N-correlation experiment was 60% and 40%, respectively, and the residual linewidths were 5 Hz for 15N and 15 Hz for 1HN at 4 degrees C. Because the ratio of the DD and CSA relaxation rates is nearly independent of the molecular size, a similar percentagewise reduction of the overall transverse relaxation rates is expected for larger proteins. For a 15N-labeled protein of 150 kDa at 750 MHz and 20 degrees C one predicts residual linewidths of 10 Hz for 15N and 45 Hz for 1HN, and for the corresponding uniformly 15N,2H-labeled protein the residual linewidths are predicted to be smaller than 5 Hz and 15 Hz, respectively. The TROSY principle should benefit a variety of multidimensional solution NMR experiments, especially with future use of yet somewhat higher polarizing magnetic fields than are presently available, and thus largely eliminate one of the key factors that limit work with larger molecules.

PMID: 9356455 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess [J. Magn. Reson. 142 (2000) 331–340]
Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Corrected Proof, Available online 3 September 2011</br> Hans Wolfgang, Spiess</br> The development of four-pulse DEER as described, which has been published in the Journal of Magnetic Resonance more than 10 years ago. The corresponding paper is an example where a slight advance, such as adding a refocusing pulse, which in retrospect looks so simple,...
nmrlearner Journal club 0 09-03-2011 07:32 PM
[U. of Ottawa NMR Facility Blog] Virtual Coupling
Virtual Coupling When the chemical shift difference between two J coupled nuclei is of the same order as the coupling constant, second order spectra are obtained. See this and this. One, often unrecognized, second order effect is virtual coupling which is often misinterpreted as first order weak coupling. In a three-spin system, virtual coupling occurs when the observed nucleus appears to be coupled to both of the other two nuclei even though it is only coupled to one of them. This arises in AA'X and ABX spin systems when X (the observed nucleus) is coupled to only one of the other two...
nmrlearner News from NMR blogs 0 08-12-2011 02:30 AM
4ii. NMR spectroscopy - Coupling
4ii. NMR spectroscopy - Coupling http://i.ytimg.com/vi/oLTLCECTRLg/default.jpg 4ii. NMR spectroscopy - Coupling Visit www.chemistry.jamesmungall.co.uk for notes on this topic. Thanks for watching! Explanation of how coupling occurs. Specific example of formation of a doublet due to coupling of 2 non-identical protons. Part of a set of videos giving an introductory course on proton NMR, aimed at around A-level or International Baccalaureate standard. Includes dicussion of integration, chemical shift and coupling. From:jamesmungall Views:6379...
nmrlearner NMR educational videos 0 08-01-2011 12:07 AM
4i. NMR spectroscopy - Coupling
4i. NMR spectroscopy - Coupling http://i.ytimg.com/vi/nAckAxapmc4/default.jpg 4i. NMR spectroscopy - Coupling Explanation of coupling with two neighbouring protons. Formation of a doublet and a triplet. The n+1 rule, quartets, quintets. Part of a set of videos giving an introductory course on proton NMR, aimed at around A-level or International Baccalaureate standard. Includes dicussion of integration, chemical shift and coupling. From:jamesmungall Views:7182 http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner NMR educational videos 0 03-30-2011 09:11 PM
[NMR paper] A structural mode-coupling approach to 15N NMR relaxation in proteins.
A structural mode-coupling approach to 15N NMR relaxation in proteins. Related Articles A structural mode-coupling approach to 15N NMR relaxation in proteins. J Am Chem Soc. 2001 Apr 4;123(13):3055-63 Authors: Tugarinov V, Liang Z, Shapiro YE, Freed JH, Meirovitch E The two-body Slowly Relaxing Local Structure (SRLS) model was applied to (15)N NMR spin relaxation in proteins and compared with the commonly used original and extended model-free (MF) approaches. In MF, the dynamic modes are assumed to be decoupled, local ordering at the N-H sites...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The structure and dipole moment of globular proteins in solution and crystalline stat
The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Related Articles The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Biopolymers. 2001 Apr 5;58(4):398-409 Authors: Takashima S The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR
The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database. Related Articles The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database. Biophys Chem. 1999 Aug 30;80(3):153-63 Authors: Takashima S, Yamaoka K Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[Question from NMRWiki Q&A forum] J-Coupling In Proton NMR
J-Coupling In Proton NMR I'm currently a college student taking Organic Chem and I've no idea how to figure out the J-coupling for H-NMR and neither my professor/TA's/book are being helpful. Does one apply the n+1 rule first to figure the number of peaks and then apply the various couplings to each peak? I understand that if a single H has two non-equivalent neighboring protons, you'd get a doublet of doublets instead of a triplet. But say, for example, how would I figure out the signal for the hydrogens attached to the terminal C of the double bond in 1-pentene ( the first carbon in,...
nmrlearner News from other NMR forums 0 08-22-2010 02:30 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:29 AM.


Map