Related ArticlesAtomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR.
Biochemistry. 2004 Nov 9;43(44):13926-31
Authors: Sandström C, Berteau O, Gemma E, Oscarson S, Kenne L, Gronenborn AM
The minimum oligosaccharide structure required for binding to the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by saturation-transfer difference (STD) NMR spectroscopy. Despite the low molecular mass of the protein (11 kDa), STD-NMR spectroscopy allowed the precise atomic mapping of the interactions between CV-N and various di- and trimannosides, substructures of Man-9, the predominant oligosaccharide on the HIV viral surface glycoprotein gp120. Contacts with mannosides containing the terminal Manalpha(1-->2)Manalpha unit of Man-9 were observed, while (1-->3)- and (1-6)-linked di- and trimannosides showed no interactions, demonstrating that the terminal Manalpha(1-->2)Manalpha structure plays a key role in the interaction. Precise epitope mapping revealed that, for Manalpha(1-->2)ManalphaOMe, Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe, and Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe, the protein is in close contact with H2, H3, and H4 of the nonreducing terminal mannose unit. In contrast, the STD-NMR spectrum of the CV-N/trisaccharide Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe complex was markedly different, with resonances on all sugar units displaying equal enhancements, suggesting that CV-N is able to discriminate between the three structurally related trisaccharides.
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203686t
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
J Am Chem Soc. 2011 Jun 6;
Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE
Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner
Journal club
0
06-07-2011 11:05 AM
A natural and readily available crowding agent: NMR studies of proteins in hen egg white.
A natural and readily available crowding agent: NMR studies of proteins in hen egg white.
A natural and readily available crowding agent: NMR studies of proteins in hen egg white.
Proteins. 2010 Dec 13;
Authors: Martorell G, Adrover M, Kelly G, Temussi PA, Pastore A
In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems,...
nmrlearner
Journal club
0
02-22-2011 10:40 PM
[NMR paper] Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble
Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations.
Related Articles Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations.
J Am Chem Soc. 2005 Jan 19;127(2):476-7
Authors: Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM
The intrinsically disordered protein alpha-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD). We show here that the native state of alpha-synuclein...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] A caged lanthanide complex as a paramagnetic shift agent for protein NMR.
A caged lanthanide complex as a paramagnetic shift agent for protein NMR.
Related Articles A caged lanthanide complex as a paramagnetic shift agent for protein NMR.
Chemistry. 2004 Jul 5;10(13):3252-60
Authors: Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy ME, Hupkes HJ, Kosters W, Impagliazzo A, Ubbink M
A lanthanide complex, named CLaNP (caged lanthanide NMR probe) has been developed for the characterisation of proteins by paramagnetic NMR spectroscopy. The probe consists of a lanthanide chelated by a derivative of DTPA...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Epitope mapping of ligand-receptor interactions by diffusion NMR.
Epitope mapping of ligand-receptor interactions by diffusion NMR.
Related Articles Epitope mapping of ligand-receptor interactions by diffusion NMR.
J Am Chem Soc. 2002 Aug 28;124(34):9984-5
Authors: Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ
A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)
David S Burz, Kaushik Dutta, David Cowburn & Alexander Shekhtman
We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define...