Related ArticlesAssignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
Biochemistry. 1990 Sep 4;29(35):8172-84
Authors: Clore GM, Bax A, Driscoll PC, Wingfield PT, Gronenborn AM
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)
[Question from NMRWiki Q&A forum] Side chain assignment of C-terminal residue
Side chain assignment of C-terminal residue
Dear Friends,
I am not able to figure out how to determine the side chain assignment of Last C-terminal SERINE residue of my protein. I can determine CA, CB, CO, N,H values from HNCA, CBCANH, HNCACO. Can someone tell which experiment will give me the information of HA, HB2 and HB3
Regards
Arun
nmrlearner
News from other NMR forums
0
10-09-2011 06:23 PM
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data
Abstract One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY...
nmrlearner
Journal club
0
06-27-2011 04:30 AM
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
Abstract An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13Cā?²(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the ā??out-and-backā?? style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13Cā?² dimension and on average 1.6 times higher sensitivity especially for residues in Ī±-helices. Performance of the new experiment...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 d
Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy.
Related Articles Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy.
J Biomol NMR. 2000 Oct;18(2):173-6
Authors: Mulder FA, Ayed A, Yang D, Arrowsmith CH, Kay LE
The p53 tumor suppressor is a transcription factor that plays a crucial role in the activation of genes in response to DNA damage. As a first step towards detailed structural studies of the...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-label
NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
Related Articles NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
J Biomol NMR. 2000 Aug;17(4):305-10
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of side chain-side chain hydrogen bonding interactions in proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the guanidinium nitrogen 15Nepsilon of arginine 71,...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics
Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
Protein Sci. 1995 May;4(5):936-44
Authors: Hammen PK, Scholtz...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Complete resonance assignment for the polypeptide backbone of interleukin 1 beta usin
Complete resonance assignment for the polypeptide backbone of interleukin 1 beta using three-dimensional heteronuclear NMR spectroscopy.
Related Articles Complete resonance assignment for the polypeptide backbone of interleukin 1 beta using three-dimensional heteronuclear NMR spectroscopy.
Biochemistry. 1990 Apr 10;29(14):3542-56
Authors: Driscoll PC, Clore GM, Marion D, Wingfield PT, Gronenborn AM
The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1 beta (153...
nmrlearner
Journal club
0
08-21-2010 10:48 PM
arginine side chain assignment pulse wanted
Hi, I want use 15N labeling for arginine side chain assignment. it seems the 2D HE(NE)HGHH is the right pulse to use ( J bio. NMR. 10(1997):193 ). You will be very appreciated for any information about getting this pulse. Thanks.