Related ArticlesAssignment of 13C resonances and analysis of relaxation properties and internal dynamics of pike parvalbumin by 13C-NMR at natural abundance.
Eur J Biochem. 1996 May 1;237(3):561-74
Authors: Alattia T, Padilla A, Cavé A
Pike parvalbumin is an 11.5-kDa globular protein which binds Ca2+ through EF-hand structural motifs. Nearly complete assignment of the protonated 13C resonances has been achieved by means of heteronuclear two-dimensional experiments. The study shows that 13Ca chemical shifts can be very sensitive to localised conformational aspects. To characterise internal dynamics of pike parvalbumin, longitudinal-relaxation and transverse-relaxation rates and 1H-13C NOEs were measured for alpha-carbons at natural abundance by means of two-dimensional NMR spectroscopy. Relaxation data were obtained at a spectrometer frequency of 600 MHz for 69 residues with an even spread along the parvalbumin polypeptide chain. A double approach that included Lipari-Szabo analysis and direct mapping of spectral densities was used to interpret relaxation data in terms of internal dynamics. The former analysis provides valuable information about the overall rotational correlation time and S2 order parameters, while the mapping approach characterises the relative contributions of different motional frequencies. The results suggest that Ca(2+)-loaded pike parvalbumin has a rigid structure, even in the functional regions, i.e., the Ca(2+)-binding loops. The patterns of density-function values are more sensitive to the secondary structure than those of S2. Moreover, depending on the sampling frequency, these patterns reveal different aspects of structure-specific motions.
[NMR paper] Slow internal dynamics in proteins: application of NMR relaxation dispersion spectros
Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
Related Articles Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
J Am Chem Soc. 2002 Feb 20;124(7):1443-51
Authors: Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE
Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 d
Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy.
Related Articles Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy.
J Biomol NMR. 2000 Oct;18(2):173-6
Authors: Mulder FA, Ayed A, Yang D, Arrowsmith CH, Kay LE
The p53 tumor suppressor is a transcription factor that plays a crucial role in the activation of genes in response to DNA damage. As a first step towards detailed structural studies of the...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Assignment of the backbone 1H,15N,13C NMR resonances and secondary structure of a dou
Assignment of the backbone 1H,15N,13C NMR resonances and secondary structure of a double-stranded RNA binding domain from the Drosophila protein staufen.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Assignment of the backbone 1H,15N,13C NMR resonances and secondary structure of a double-stranded RNA binding domain from the Drosophila protein staufen.
FEBS Lett. 1995 Apr 10;362(3):333-6
Authors: Bycroft M, Proctor M, Freund SM, St Johnston D
NMR spectroscopy has been...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at
Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
Related Articles Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
J Biomol NMR. 1995 Apr;5(3):233-44
Authors: Mispelter J, Lefèvre C, Adjadj E, Quiniou E, Favaudon V
Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-(1H) NOEs, measured at natural abundance. Relaxation...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Assignment of the protonated 13C resonances of apo-neocarzinostatin by 2D heteronucle
Assignment of the protonated 13C resonances of apo-neocarzinostatin by 2D heteronuclear NMR spectroscopy at natural abundance.
Related Articles Assignment of the protonated 13C resonances of apo-neocarzinostatin by 2D heteronuclear NMR spectroscopy at natural abundance.
J Biomol NMR. 1994 Sep;4(5):689-702
Authors: Lefevre C, Adjadj E, Quiniou E, Mispelter J
Nearly complete assignment of the protonated carbon resonances of apo-neocarzinostatin, a 113-amino acid antitumor antibiotic carrier protein, has been achieved at natural 13C abundance...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme.
Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme.
Related Articles Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme.
Biochemistry. 1990 Jul 10;29(27):6341-62
Authors: McIntosh LP, Wand AJ, Lowry DF, Redfield AG, Dahlquist FW
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC)...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
Approaches to the assignment of 19F resonances from 3-fluorophenylalanine labeled cal
Abstract Traditional single site replacement mutations (in this case, phenylalanine to tyrosine) were compared with methods which exclusively employ 15N and 19F-edited two- and three-dimensional NMR experiments for purposes of assigning 19F NMR resonances from calmodulin (CaM), biosynthetically labeled with 3-fluorophenylalanine (3-FPhe). The global substitution of 3-FPhe for native phenylalanine was tolerated in CaM as evidenced by a comparison of 1H-15N HSQC spectra and calcium binding assays in the presence and absence of 3-FPhe. The 19F NMR spectrum reveals six resolved resonances, one...