BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-25-2020, 02:58 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Assessment of the Role of TFE Solvent Dynamics in Inducing Conformational Transitions in Melittin: An Approach with Solvent 19F Low Field NMR Relaxation and Overhauser DNP Studies.

Assessment of the Role of TFE Solvent Dynamics in Inducing Conformational Transitions in Melittin: An Approach with Solvent 19F Low Field NMR Relaxation and Overhauser DNP Studies.

Related Articles Assessment of the Role of TFE Solvent Dynamics in Inducing Conformational Transitions in Melittin: An Approach with Solvent 19F Low Field NMR Relaxation and Overhauser DNP Studies.

J Phys Chem B. 2020 Jun 23;:

Authors: Chaubey B, Dey A, Banerjee A, Chandrakumar N, Pal S

Abstract
2, 2, 2 Trifluoroethanol (TFE) is one of the fluoroalcohols that have been known to induce and stabilize open helical structure in many proteins and peptides. The current study has benchmarked low field 19F NMR relaxation and 19F Overhauser Dynamic Nuclear Polarization (DNP) by providing a brief account of TFE solvent dynamics in a model Melittin (MLT; an antimicrobial peptide) solution with TFE: D2O cosolvent mixture at pH 7.4. Further, this approach has been employed to reveal the solvation of MLT by TFE in a non-buffered solution with a pH 2.8 for the first time. The structural transition of MLT has been elucidated via solvent dynamics by measuring 19F TFE relaxation rates at 0.34 T for various TFE: D2O compositions in absence (bulk TFE) and in presence of MLT at both the pH values. A complementary initial record of Circular Dichroism (CD) experiments on these aqueous MLT solutions with TFE as cosolvent at two different pH conditions demonstrated random coil to helical, or folded helical to open helical structure. The molecular correlation time derived from corresponding relaxation rates shows that TFE resides on the MLT surface in both pH conditions. However, the trends in the variation of molecular correlation time ratio as a function of TFE concentration represent that the mechanism and the extent to which TFE affects the MLT structural integrity are different at different pH. The extraction of the DNP coupling parameter from steady state 19F ODNP experiments performed in presence of TEMPOL at 0.34 T revealed changes in solvation dynamics of TFE concomitant with MLT structural transition. In summary, 19F relaxation and ODNP measurements made at low field have allowed direct monitoring of TFE dynamics during MLTs structural transition in terms of preferential solvation. The choice of experiments performed at moderately low field (0.34 T) enabled us to exploit on the one hand almost 1200-fold mitigation of the strong contribution of 19F CSA at 11.76 T, while on the other hand the ODNP experiment offered a window for probing molecular dynamics on timescales of the order of 10-1000 picoseconds.


PMID: 32573229 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
15 N transverse relaxation measurements for the characterization of Āµsā??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange
15 N transverse relaxation measurements for the characterization of Āµsā??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange Abstract 15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein Ī±-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amideā??water exchange can severely skew Hahn-echo based 15N R2...
nmrlearner Journal club 0 11-25-2018 06:02 AM
[NMR paper] (15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach.
(15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach. Related Articles (15)N-H-Related Conformational Entropy Changes Entailed By Plexin-B1 RBD Dimerization: A Combined Molecular Dynamics/NMR Relaxation Approach. J Phys Chem B. 2017 Mar 10;: Authors: Zerbetto M, Meirovitch E Abstract We report on a new method for determining function-related conformational entropy changes in proteins. Plexin-B1 RBD dimerization serves as example, and...
nmrlearner Journal club 0 03-11-2017 05:12 PM
[NMR paper] Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput. 2017 Feb 14;: Authors: Jose KV, Raghavachari K Abstract We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large...
nmrlearner Journal club 0 02-15-2017 03:40 PM
[NMR paper] Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures.
Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures. Related Articles Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures. Biochim Biophys Acta. 2015 Apr 24; Authors: Demuth D, Haase N, Malzacher D, Vogel M Abstract We use 13C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in...
nmrlearner Journal club 0 04-29-2015 03:49 PM
Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures
Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures Publication date: Available online 25 April 2015 Source:Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics</br> Author(s): Dominik Demuth , Nils Haase , Daniel Malzacher , Michael Vogel</br> We use 13C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of...
nmrlearner Journal club 0 04-26-2015 03:28 AM
[NMR paper] NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model.
NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. Biopolymers. 2013 Sep 4; Authors: Heisel KA, Krishnan VV ...
nmrlearner Journal club 0 09-17-2013 11:36 PM
Helix conformation of a small peptide melittin in a methanol-water mixed solvent studied by NMR.
Helix conformation of a small peptide melittin in a methanol-water mixed solvent studied by NMR. Helix conformation of a small peptide melittin in a methanol-water mixed solvent studied by NMR. Protein Pept Lett. 2011 Mar;18(3):318-26 Authors: Miura Y Temperature dependence of the ?-helix conformation of bee venom melittin in methanol-water mixed solvents has been examined by NMR, in order to elucidate conformation stability and a phase diagram. At high methanol concentration of 100 - ca. 80 wt.%, melittin forms a full ?-helix conformation in the...
nmrlearner Journal club 0 06-04-2011 11:26 AM
[NMR paper] NMR relaxation studies of the role of conformational entropy in protein stability and
NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Related Articles NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc Chem Res. 2001 May;34(5):379-88 Authors: Stone MJ Recent advances in the measurement and analysis of protein NMR relaxation data have made it possible to characterize the dynamical properties of many backbone and side chain groups. With certain caveats, changes in flexibility that occur upon ligand binding, mutation, or...
nmrlearner Journal club 0 11-19-2010 08:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:34 AM.


Map