BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-08-2017, 02:25 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.

Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.

Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.

Nat Protoc. 2018 Jan;13(1):79-98

Authors: Hagn F, Nasr ML, Wagner G

Abstract
Suitable membrane mimetics are crucial to the performance of structural and functional studies of membrane proteins. Phospholipid nanodiscs (formed when a membrane scaffold protein encircles a small portion of a lipid bilayer) have native-like membrane properties. These have been used for a variety of functional studies, but structural studies by high-resolution solution-state NMR spectroscopy of membrane proteins in commonly used nanodiscs of 10-nm diameter were limited by the high molecular weight of these particles, which caused unfavorably large NMR line widths. We have recently constructed truncated versions of the membrane scaffold protein, allowing the preparation of a range of stepwise-smaller nanodiscs (6- to 8-nm diameter) to overcome this limitation. Here, we present a protocol on the assembly of phospholipid nanodiscs of various sizes for structural studies of membrane proteins with solution-state NMR spectroscopy. We describe specific isotope-labeling schemes required for working with large membrane protein systems in nanodiscs, and provide guidelines on the setup of NMR non-uniform sampling (NUS) data acquisition and high-resolution NMR spectra reconstruction. We discuss critical points and pitfalls relating to optimization of nanodiscs for NMR spectroscopy and outline a strategy for the high-resolution structure determination and positioning of isotope-labeled membrane proteins in nanodiscs using nuclear Overhauser enhancement spectroscopy (NOESY) spectroscopy, residual dipolar couplings (RDCs) and paramagnetic relaxation enhancements (PREs). Depending on the target protein of interest, nanodisc assembly and purification can be achieved within 12-24 h. Although the focus of this protocol is on protein NMR, these nanodiscs can also be used for (cryo-) electron microscopy (EM) and small-angle X-ray and neutron-scattering studies.


PMID: 29215632 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins.
An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. J Am Chem Soc. 2017 Oct 09;: Authors: Chien CH, Helfinger LR, Bostock MJ, Solt A, Tan YL, Nietlispach D Abstract Based on the saposin-A (SapA) scaffold protein we demonstrate the suitability of a size-adaptable phospholipid membrane-mimetic system for solution NMR studies of membrane proteins under close-to-native conditions. The Salipro...
nmrlearner Journal club 0 10-11-2017 10:37 AM
[NMR paper] Reconstitution of the Cytb5 -CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy.
Reconstitution of the Cytb5 -CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Reconstitution of the Cytb5 -CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl. 2016 Feb 29; Authors: Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A Abstract Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox...
nmrlearner Journal club 0 03-01-2016 05:59 PM
[NMR paper] Optimizing nanodiscs and bicelles for solution NMR studies of two ?-barrel membrane proteins.
Optimizing nanodiscs and bicelles for solution NMR studies of two ?-barrel membrane proteins. Related Articles Optimizing nanodiscs and bicelles for solution NMR studies of two ?-barrel membrane proteins. J Biomol NMR. 2015 Apr;61(3-4):261-74 Authors: Kucharska I, Edrington TC, Liang B, Tamm LK Abstract Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in...
nmrlearner Journal club 0 04-15-2015 04:40 PM
Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins
Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins Abstract Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore,...
nmrlearner Journal club 0 02-10-2015 10:56 AM
Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs
Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs Abstract NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR...
nmrlearner Journal club 0 11-28-2014 11:37 AM
Nanodiscs versus Macrodiscs for NMR of Membrane Proteins
Nanodiscs versus Macrodiscs for NMR of Membrane Proteins http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi201289c/aop/images/medium/bi-2011-01289c_0002.gif Biochemistry DOI: 10.1021/bi201289c http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/4XXVT7tcC8w More...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Nanodiscs vs. Macrodiscs for NMR of Membrane Proteins.
Nanodiscs vs. Macrodiscs for NMR of Membrane Proteins. Nanodiscs vs. Macrodiscs for NMR of Membrane Proteins. Biochemistry. 2011 Sep 21; Authors: Park SH, Berkamp S, Cook GA, Chan MK, Viadiu H, Opella SJ Abstract It is challenging to find membrane mimics that stabilize the native structure, dynamics, and functions of membrane proteins. In a recent advance, nanodiscs have been shown to provide a bilayer environment compatible with solution NMR. Increasing the lipid to "belt" peptide ratio expands their diameter, slows their reorientation...
nmrlearner Journal club 0 09-23-2011 05:30 PM
[NMR paper] An evaluation of detergents for NMR structural studies of membrane proteins.
An evaluation of detergents for NMR structural studies of membrane proteins. Related Articles An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR. 2004 Jan;28(1):43-57 Authors: Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME Structural information on membrane proteins lags far behind that on soluble proteins, in large part due to difficulties producing homogeneous, stable, structurally relevant samples in a membrane-like environment....
nmrlearner Journal club 0 11-24-2010 09:25 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:58 AM.


Map