Related ArticlesArginine Kinase. Joint Crystallographic and NMR RDC Analyses link Substrate-Associated Motions to Intrinsic Flexibility.
J Mol Biol. 2010 Nov 11;
Authors: Niu X, Brüschweiler-Li L, Davulcu O, Skalicky JJ, Brüschweiler R, Chapman MS
The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a "high energy" phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and -bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, "substrate-induced" motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection.
PMID: 21075117 [PubMed - as supplied by publisher]
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Biochemistry. 2011 Aug 27;
Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN
Abstract
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner
Journal club
0
08-30-2011 04:52 PM
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
J Inorg Biochem. 2010 Oct;104(10):1063-70
Authors: Du Z, Unno M, Matsui T, Ikeda-Saito M, La Mar GN
Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the...
nmrlearner
Journal club
0
02-10-2011 03:51 PM
[NMR paper] Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immuno
Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor.
Related Articles Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor.
J Biol Chem. 2000 May 26;275(21):16174-82
Authors: Gaul BS, Harrison ML, Geahlen RL, Burton RA, Post CB
The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.nrc-cnrc.gc.ca-cisti-journals-rp-gifs-PubMed_logo_e.gif Related Articles NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
Biochem Cell Biol. 1997;75(2):163-9
Authors: Brockbank RL, Vogel HJ
The proton and carbon-13 NMR resonances for the 13-residue synthetic RRsrc peptide were completely assigned using two-dimensional NMR spectroscopy. This peptide contains a tyrosine in position 9 that can be phosphorylated...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.nrc-cnrc.gc.ca-cisti-journals-rp-gifs-PubMed_logo_e.gif Related Articles NMR studies of the RRsrc peptide, a tyrosine kinase substrate.
Biochem Cell Biol. 1997;75(2):163-9
Authors: Brockbank RL, Vogel HJ
The proton and carbon-13 NMR resonances for the 13-residue synthetic RRsrc peptide were completely assigned using two-dimensional NMR spectroscopy. This peptide contains a tyrosine in position 9 that can be phosphorylated...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
A link to MolMol2K for Linux
<a href=http://pjf.net/science/molmol.html>MolMol binaries for Linux distribution Red Hat 7.3 and 9 built by Patrik Finerty</a>