BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-31-2016, 02:34 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies.

Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies.

Related Articles Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies.

Eur Biophys J. 2015 Dec;44(8):727-43

Authors: Lubecka EA, Sikorska E, Sobolewski D, Prahl A, Slaninová J, Ciarkowski J

Abstract
We describe the synthesis, pharmacological properties, and structures of antidiuretic agonists, arginine vasopressin (AVP) and [D-Arg(8)]-vasopressin (DAVP), and their inverso analogues. The structures of the peptides are studied based on micellar and liposomic models of cell membranes using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic-zwitterionic micelles are obtained using NMR spectroscopy and molecular dynamics simulations. NMR data have shown that AVP and DAVP tend to adopt typical of vasopressin-like peptides ?-turns: in the 2-5 and 3-6 fragments. The inverso-analogues also adopt ?-turns in the 3-6 fragments. For this reason, their inactivity seems to be due to the difference in side chains orientations of Tyr(2), Phe(3), and Arg(8), important for interactions with the receptors. Again, the potent antidiuretic activity of DAVP can be explained by CD data suggesting differences in mutual arrangement of the aromatic side chains of Tyr(2) and Phe(3) in this peptide in liposomes rather than of native AVP. In the presence of liposomes, the smallest conformational changes of the peptides are noticed with DPPC and the largest with DPPG liposomes. This suggests that electrostatic interactions are crucial for the peptide-membrane interactions. We obtained similar, probably active, conformations of the antidiuretic agonists in the mixed DPC/SDS micelles (5:1) and in the mixed DPPC/DPPG (7:3) liposomes. Thus it can be speculated that the anionic-zwitterionic liposomes as well as the anionic-zwitterionic micelles, mimicking the eukaryotic cell membrane environment, partially restrict conformational freedom of the peptides and probably induce conformations resembling those of biologically relevant ones.


PMID: 26290060 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The bibliography manager for researchers
nmrlearner Journal club 0 09-29-2015 02:39 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 04-11-2013 09:27 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The library management tool for researchers
nmrlearner Journal club 0 04-11-2013 03:08 PM
[NMR paper] Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim Biophys Acta. 2013 Feb;1828(2):824-33 Authors: Witte K, Olausson BE, Walrant A, Alves ID, Vogel A ...
nmrlearner Journal club 0 04-05-2013 10:53 AM
Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translo
Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy. Related Articles Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy. J Am Chem Soc. 2010 Oct 26; Authors: Walther TH, Grage SL, Roth N, Ulrich AS The twin-arginine translocase (Tat) provides protein export in bacteria and plant chloroplasts and is capable of transporting fully folded...
nmrlearner Journal club 0 10-29-2010 07:05 PM
Membrane Alignment of the Pore-Forming Component TatAd of the Twin-Arginine Transloca
Membrane Alignment of the Pore-Forming Component TatAd of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy Torsten H. Walther, Stephan L. Grage, Nadine Roth and Anne S. Ulrich http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja106963s/aop/images/medium/ja-2010-06963s_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja106963s http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/w34WC8p2mzY
nmrlearner Journal club 0 10-27-2010 08:51 AM
[NMR paper] 1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residu
1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residues in complexes of brodimoprim analogues and Lactobacillus casei dihydrofolate reductase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residues in complexes of brodimoprim analogues and Lactobacillus casei dihydrofolate reductase. Biochemistry. 1999 Feb 16;38(7):2127-34 Authors: Morgan WD, Birdsall B, Nieto PM, Gargaro AR, Feeney J ...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:03 PM.


Map