Publication date: Available online 4 November 2013 Source:Coordination Chemistry Reviews
Author(s): Wei-Min Liu , Mark Overhand , Marcellus Ubbink
Lanthanoids are gaining popularity as paramagnetic centers for high resolution nuclear magnetic resonance (NMR) spectroscopy. They provide valuable angular and long-distance restraints for structure calculations of proteins and protein complexes. The introduction of lanthanoids into a protein sample is complicated by the many requirements for functional artificial paramagnetic probes. For many applications, the probe needs to be attached site-specifically and rigidly to the protein and the coordination of the lanthanoid by the tag must result in a unique anisotropy of the magnetic susceptibility. The variety of lanthanoid coordination systems that has been explored to design paramagnetic probes that meet these demands is reviewed. Also the applications of the tags are discussed, including protein and protein complex structure determination, assignment of protein NMR spectra and the study of protein dynamics. It is concluded that lanthanoid probes bear great potential for further applications in protein NMR spectroscopy, provided that various aspects can be improved further.
Small-Molecule Binding Sites on Proteins Establishedby Paramagnetic NMR Spectroscopy
Small-Molecule Binding Sites on Proteins Establishedby Paramagnetic NMR Spectroscopy
Jia-Ying Guan, Peter H. J. Keizers, Wei-Min Liu, Frank Lo?hr, Simon P. Skinner, Edwin A. Heeneman, Harald Schwalbe, Marcellus Ubbink and Gregg Siegal
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja401323m/aop/images/medium/ja-2013-01323m_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja401323m
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/ZukfjIRmQq8
nmrlearner
Journal club
0
04-05-2013 11:03 PM
[NMR paper] Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
Related Articles Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
J Am Chem Soc. 2013 Mar 20;
Authors: Guan JY, Keizers PH, Liu WM, Loehr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal GD
Abstract
Determining the three dimensional structure of a small molecule-protein complex with weak affinity can be a significant challenge. We present a paramagnetic NMR method to determine intermolecular structure...
nmrlearner
Journal club
0
03-21-2013 02:58 PM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 215</br>
Claudio Luchinat, Malini Nagulapalli, Giacomo Parigi, Luca Sgheri</br>
Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed...
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 30 December 2011</br>
Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br>
Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner
Journal club
0
12-31-2011 10:40 AM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner
Journal club
0
10-21-2011 10:04 PM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner
Journal club
0
09-26-2011 06:42 AM
Engineering [Ln(DPA)3]3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions
Engineering 3â?? binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions
Abstract Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and...