Publication date: Available online 11 May 2017 Source:Archives of Biochemistry and Biophysics
Author(s): Eric B. Gibbs, Erik C. Cook, Scott A. Showalter
The prevalence of intrinsically disordered protein regions, particularly in eukaryotic proteins, and their clear functional advantages for signaling and gene regulation have created an imperative for high-resolution structural and mechanistic studies. NMR spectroscopy has played a central role in enhancing not only our understanding of the intrinsically disordered native state, but also how that state contributes to biological function. While pathological functions associated with protein aggregation are well established, it has recently become clear that disordered regions also mediate functionally advantageous assembly into high-order structures that promote the formation of membrane-less sub-cellular compartments and even hydrogels. Across the range of functional assembly states accessed by disordered regions, post-translational modifications and regulatory macromolecular interactions, which can also be investigated by NMR spectroscopy, feature prominently. Here we will explore the many ways in which NMR has advanced our understanding of the physical-chemical phase space occupied by disordered protein regions and provide prospectus for the future role of NMR in this emerging and exciting field. Graphical abstract
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Abstract
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use...
nmrlearner
Journal club
0
07-20-2016 08:15 AM
[NMR paper] NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
Related Articles NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
Adv Exp Med Biol. 2015;870:149-185
Authors: Kurzbach D, Kontaxis G, Coudevylle N, Konrat R
Abstract
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational flexibility and thus not amenable to conventional structural biology techniques. Given their inherent structural flexibility NMR...
nmrlearner
Journal club
0
09-21-2015 03:01 PM
[NMR paper] NMR contributions to structural dynamics studies of intrinsically disordered proteins.
NMR contributions to structural dynamics studies of intrinsically disordered proteins.
Related Articles NMR contributions to structural dynamics studies of intrinsically disordered proteins.
J Magn Reson. 2014 Apr;241:74-85
Authors: Konrat R
Abstract
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic...
nmrlearner
Journal club
0
03-25-2014 11:49 AM
NMR contributions to structural dynamics studies of intrinsically disordered proteins
NMR contributions to structural dynamics studies of intrinsically disordered proteins
Publication date: April 2014
Source:Journal of Magnetic Resonance, Volume 241</br>
Author(s): Robert Konrat</br>
Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development...
[NMR paper] NMR Spectroscopic Studies of Intrinsically Disordered Proteins at Near-Physiological Conditions.
NMR Spectroscopic Studies of Intrinsically Disordered Proteins at Near-Physiological Conditions.
Related Articles NMR Spectroscopic Studies of Intrinsically Disordered Proteins at Near-Physiological Conditions.
Angew Chem Int Ed Engl. 2013 Sep 20;
Authors: Gil S, Hošek T, Solyom Z, Kümmerle R, Brutscher B, Pierattelli R, Felli IC
Abstract
When approaching physiological conditions, solvent exchange of amide protons in intrinsically disordered proteins (IDPs) is so pronounced that it becomes a key feature to be considered in NMR experiment...
nmrlearner
Journal club
0
10-12-2013 05:24 PM
[NMR paper] Highly efficient NMR assignment of intrinsically disordered proteins: application to B- and T cell receptor domains.
Highly efficient NMR assignment of intrinsically disordered proteins: application to B- and T cell receptor domains.
Related Articles Highly efficient NMR assignment of intrinsically disordered proteins: application to B- and T cell receptor domains.
PLoS One. 2013;8(5):e62947
Authors: Isaksson L, Mayzel M, Saline M, Pedersen A, Rosenlöw J, Brutscher B, Karlsson BG, Orekhov VY
Abstract
We present an integrated approach for efficient characterization of intrinsically disordered proteins. Batch cell-free expression, fast data acquisition,...
nmrlearner
Journal club
0
05-15-2013 03:12 PM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...