BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-09-2011, 04:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The application of micro-coil NMR probe technology to metabolomics of urine and serum

The application of micro-coil NMR probe technology to metabolomics of urine and serum


Abstract Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5 mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.
  • Content Type Journal Article
  • Pages 1-9
  • DOI 10.1007/s10858-011-9488-2
  • Authors
    • John H. Grimes, Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
    • Thomas M. Oâ??Connell, Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] Tuning probe failed after a dual probe was replaced with a BBI probe
Tuning probe failed after a dual probe was replaced with a BBI probe We generally use Dual to run 13C and BBI to run 2D. After changed the probe, the command "edhead" was used to set the probe. Put the sample tube, lock the solvent, and then type "atma" to tune the probe. We always do it like this, but now we can not tune the proton after installed the BBI probe (13C is OK). The dip can not be found by "atma", and "atmm" was also not work on forming a dip. What is the most possible reason for this error? How to solve it and avoid it in the future ? Thanks. (Instrument: Bruker 400 MHz,...
nmrlearner News from other NMR forums 0 08-23-2011 05:31 PM
Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples.
Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples. Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples. Sci Transl Med. 2011 Feb 23;3(71):71ra16 Authors: Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, Weissleder R Although tumor cells obtained from human patients by image-guided intervention are a valuable source for diagnosing cancer, conventional means of analysis are limited. Here, we report the development of a quantitative micro-NMR (nuclear magnetic resonance) system for rapid, multiplexed analysis...
nmrlearner Journal club 0 02-25-2011 08:54 PM
[NMR paper] Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Related Articles Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci. 2005 Sep;14(9):2421-8 Authors: Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR tweet] EDG: Nuclear magnetic resonance-based analysis of urine for the rapid etiological dia
EDG: Nuclear magnetic resonance-based analysis of urine for the rapid etiological diagnosis of pneumonia: Expert... http://bit.ly/hSg6sr Published by ExpertOpinion (Expert Opinion) on 2010-11-27T04:30:10Z Source: Twitter
nmrlearner Twitter NMR 0 11-27-2010 05:34 AM
[NMR paper] NMR difference spectroscopy with a dual saddle-coil difference probe.
NMR difference spectroscopy with a dual saddle-coil difference probe. Related Articles NMR difference spectroscopy with a dual saddle-coil difference probe. Anal Bioanal Chem. 2004 Mar;378(6):1520-7 Authors: Macnaughtan MA, Smith AP, Goldsbrough PB, Santini RE, Raftery D A new difference probe for nuclear magnetic resonance (NMR) spectroscopy is presented. The difference probe uses two saddle-shaped coils to excite and detect two samples simultaneously. The samples are held in a specially modified 3-mm NMR tube with an Ultem plastic disk to...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] 1H NMR studies of reactions of copper complexes with human blood plasma and urine.
1H NMR studies of reactions of copper complexes with human blood plasma and urine. Related Articles 1H NMR studies of reactions of copper complexes with human blood plasma and urine. Biochem Pharmacol. 1992 Jan 22;43(2):137-45 Authors: Bligh SW, Boyle HA, McEwen AB, Sadler PJ, Woodham RH Reactions of the copper complexes Cu(II)Cl2, 2-, and + (where DIPS is 3,5-diisopropylsalicylate and DMP is 2,9-dimethylphenanthroline) with human blood plasma and urine have been studied by 500 MHz 1H NMR spectroscopy, and CD spectroscopy has been used to...
nmrlearner Journal club 0 08-21-2010 11:41 PM
Application of the random coil index to studying protein flexibility
Application of the random coil index to studying protein flexibility Mark V. Berjanskii and David S. Wishart Journal of Biomolecular NMR; 2008; 40(1); pp 31-48 Abstract: Protein flexibility lies at the heart of many protein–ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to...
matthias Journal club 0 08-14-2008 01:03 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:01 AM.


Map