BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-16-2015, 01:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Application of comprehensive NMR-based analysis strategy in annotation, isolation and structure elucidation of low molecular weight metabolites of Ricinus communis seeds.

Application of comprehensive NMR-based analysis strategy in annotation, isolation and structure elucidation of low molecular weight metabolites of Ricinus communis seeds.

Related Articles Application of comprehensive NMR-based analysis strategy in annotation, isolation and structure elucidation of low molecular weight metabolites of Ricinus communis seeds.

Phytochem Anal. 2015 Oct 14;

Authors: Vu?kovi? I, Rapinoja ML, Vaismaa M, Vanninen P, Koskela H

Abstract
INTRODUCTION: Powder-like extract of Ricinus communis seeds contain a toxic protein, ricin, which has a history of military, criminal and terroristic use. As the detection of ricin in this "terrorist powder" is difficult and time-consuming, related low mass metabolites have been suggested to be useful for screening as biomarkers of ricin.
OBJECTIVE: To apply a comprehensive NMR-based analysis strategy for annotation, isolation and structure elucidation of low molecular weight plant metabolites of Ricinus communis seeds.
METHODOLOGY: The seed extract was prepared with a well-known acetone extraction approach. The common metabolites were annotated from seed extract dissolved in acidic solution using (1) H NMR spectroscopy with spectrum library comparison and standard addition, whereas unconfirmed metabolites were identified using multi-step off-line HPLC-DAD-NMR approach.
RESULTS: In addition to the common plant metabolites, two previously unreported compounds, 1,3-digalactoinositol and ricinyl-alanine, were identified with support of MS analyses.
CONCLUSION: The applied comprehensive NMR-based analysis strategy provided identification of the prominent low molecular weight metabolites with high confidence. Copyright © 2015 John Wiley & Sons, Ltd.


PMID: 26464348 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR-protein spectral assignment.
CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR-protein spectral assignment. Related Articles CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR-protein spectral assignment. J Biomol NMR. 2015 Aug 8; Authors: Fenwick M, Hoch JC, Ulrich E, Gryk MR Abstract Reproducibility is a cornerstone of the scientific method, essential for validation of results by independent laboratories and the sine qua non of scientific progress. A key step toward reproducibility of biomolecular NMR...
nmrlearner Journal club 0 08-09-2015 05:01 PM
CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMRâ??protein spectral assignment
CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMRâ??protein spectral assignment Abstract Reproducibility is a cornerstone of the scientific method, essential for validation of results by independent laboratories and the sine qua non of scientific progress. A key step toward reproducibility of biomolecular NMR studies was the establishment of public data repositories (PDB and BMRB). Nevertheless, bio-NMR studies routinely fall short of the requirement for reproducibility that all the data needed to reproduce the results...
nmrlearner Journal club 0 08-08-2015 12:17 PM
[NMR paper] In vivo and in vitro metabolism of a novel ?2-adrenoceptor agonist, trantinterol: metabolites isolation and identification by LC-MS/MS and NMR.
In vivo and in vitro metabolism of a novel ?2-adrenoceptor agonist, trantinterol: metabolites isolation and identification by LC-MS/MS and NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles In vivo and in vitro metabolism of a novel ?2-adrenoceptor agonist, trantinterol: metabolites isolation and identification by LC-MS/MS and NMR. Anal Bioanal Chem. 2013 Mar;405(8):2619-34 Authors: Li K, Qin F, Jing L, Li F, Guo X Abstract Trantinterol...
nmrlearner Journal club 0 08-15-2013 07:45 PM
Application of NMR and Molecular Docking in Structure-Based Drug Discovery.
Application of NMR and Molecular Docking in Structure-Based Drug Discovery. Application of NMR and Molecular Docking in Structure-Based Drug Discovery. Top Curr Chem. 2011 Sep 14; Authors: Stark JL, Powers R Abstract Drug discovery is a complex and costly endeavor, where few drugs that reach the clinical testing phase make it to market. High-throughput screening (HTS) is the primary method used by the pharmaceutical industry to identify initial lead compounds. Unfortunately, HTS has a high failure rate and is not particularly efficient at...
nmrlearner Journal club 0 09-15-2011 08:31 PM
Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay.
Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay. Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay. Bioorg Med Chem Lett. 2011 Jul 21; Authors: Mendoza R, Petros AM, Liu Y, Thimmapaya R, Surowy CS, Leise WF, Pereda-Lopez A, Panchal SC, Sun C NMR-based screening of protein targets has become a well established part of the drug discovery process especially with respect to fragments. However, as target size increases...
nmrlearner Journal club 0 08-16-2011 01:19 PM
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins.
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins. An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins. Chem Commun (Camb). 2011 Jul 26; Authors: Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J An efficient synthetic route is proposed to produce 2-hydroxy-2-ethyl-3-oxobutanoate for the specific labelling of Ile methyl-?(2) groups in proteins. The (2)H,...
nmrlearner Journal club 0 07-28-2011 10:51 AM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja1083656 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner Journal club 0 12-08-2010 10:04 AM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol. 2003 Apr 11;327(5):1121-33 Authors: Tugarinov V, Kay LE A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner Journal club 0 11-24-2010 09:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:23 AM.


Map