Related ArticlesAnomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective.
Biophys J. 2004 Oct;87(4):2456-69
Authors: Arnold A, Paris M, Auger M
Lateral diffusion is an essential process for the functioning of biological membranes. Solid-state nuclear magnetic resonance (NMR) is, a priori, a well-suited technique to study lateral diffusion within a heterogeneous environment such as the cell membrane. Moreover, restriction of lateral motions by lateral heterogeneities can be used as a means to characterize their geometry. The goal of this work is to understand the advantages and limitations of solid-state NMR exchange experiments in the study of obstructed lateral diffusion in model membranes. For this purpose, simulations of lateral diffusion on a sphere with varying numbers and sizes of immobile obstacles and different percolation properties were performed. From the results of these simulations, two-dimensional 31P NMR exchange maps and time-dependent autocorrelation functions were calculated. The results indicate that the technique is highly sensitive to percolation properties, total obstacle area, and, within certain limits, obstacle size. A practical example is shown, namely the study of the well-characterized DMPC-DSPC binary mixture. The comparison of experimental and simulated results yielded obstacle sizes in the range of hundreds of nanometers, therefore bridging the gap between previously published NMR and fluorescence recovery after photobleaching results. The method could also be applied to the study of membrane protein lateral diffusion in model membranes.
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers
Abstract Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange has been shown to start a new era for backbone assignment, protein structure elucidation, characterization of protein dynamics, and access to protein parts undergoing motion. The large absence of protons at non-exchangeable...
nmrlearner
Journal club
0
08-11-2011 02:24 AM
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers.
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers.
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers.
J Biomol NMR. 2011 Aug 7;
Authors: Linser R
Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange...
nmrlearner
Journal club
0
08-09-2011 12:11 PM
Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides.
Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides.
Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides.
J Phys Chem B. 2011 Feb 10;
Authors: Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, Otzen DE, Vosegaard T, Nielsen NC
Recently, ether lipids have been introduced as long-term stable alternatives to the more natural,...
nmrlearner
Journal club
0
02-12-2011 05:26 PM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Abstract Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives,...
nmrlearner
Proteins
0
01-22-2011 03:46 AM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
J Biomol NMR. 2011 Jan 19;
Authors: Fan Y, Shi L, Ladizhansky V, Brown LS
Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties...
nmrlearner
Journal club
0
01-21-2011 01:22 AM
[NMR paper] Structure of gramicidin a in a lipid bilayer environment determined using molecular d
Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data.
Related Articles Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data.
J Am Chem Soc. 2003 Aug 13;125(32):9868-77
Authors: Allen TW, Andersen OS, Roux B
Two different high-resolution structures recently have been proposed for the membrane-spanning gramicidin A channel: one based on solid-state NMR experiments in oriented phospholipid...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state
Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy.
Related Articles Membrane protein topology probed by (1)H spin diffusion from lipids using solid-state NMR spectroscopy.
J Am Chem Soc. 2002 Feb 6;124(5):874-83
Authors: Huster D, Yao X, Hong M
We describe a two-dimensional solid-state NMR technique to investigate membrane protein topology under magic-angle spinning conditions. The experiment detects the rate of (1)H spin diffusion from the mobile lipids to the rigid protein. While spin...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] High-resolution polypeptide structure in a lamellar phase lipid environment from soli
High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints.
Related Articles High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints.
Structure. 1997 Dec 15;5(12):1655-69
Authors: Ketchem R, Roux B, Cross T
BACKGROUND: Solid-state nuclear magnetic resonance (NMR) spectroscopy provides novel structural constraints from uniformly aligned samples. These orientational constraints orient specific atomic...