BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2020, 03:43 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations.

Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations.

Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations.

J Magn Reson. 2020 Aug 04;318:106802

Authors: Harkness RW, Toyama Y, Kay LE

Abstract
Solution NMR spectroscopy is widely used to investigate the thermodynamics and kinetics of the binding of ligands to their biological receptors, as it provides detailed, atomistic information, potentially leading to microscopic affinities for each binding event, and, to the development of allosteric pathways describing how the binding at one site affects distal sites in the molecule. Importantly, weak interactions that are often invisible to other biophysical methods can also be probed. Methodological advancements in NMR have enabled the investigation of high molecular weight, homo-oligomeric complexes that bind multiple ligand molecules, with increasing numbers of studies of the structural dynamics and binding properties of these systems. It therefore becomes of interest to consider how binding and kinetics parameters can be extracted from experiments on these more complicated molecules. Here we present the theoretical framework for analyzing binding reactions of homo-oligomeric complexes by NMR, taking into account all of the chemical species in solution and their corresponding NMR observables. A number of simulations are presented to illustrate the utility of the derived expressions.


PMID: 32818875 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: theoretical and computational considerations
Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: theoretical and computational considerations Publication date: Available online 4 August 2020 Source: Journal of Magnetic Resonance Author(s): Robert W. Harkness, Yuki Toyama, Lewis E. Kay
nmrlearner Journal club 0 08-06-2020 12:03 PM
[NMR paper] Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B.
Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B. Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B. Chemistry. 2020 May 25;: Authors: Monaco S, Walpole S, Doukani H, Nepravishta R, Nepravishta R, Martínez-Bailén M, Carmona AT, Ramos-Soriano J, Bergström M, Robina I, Angulo J, Angulo J, Angulo J ...
nmrlearner Journal club 0 05-26-2020 06:36 PM
[NMR paper] NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase.
NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase. Related Articles NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase. J Biomol NMR. 2017 Apr 09;: Authors: Shinya S, Ghinet MG, Brzezinski R, Furuita K, Kojima C, Shah S, Kovrigin EL, Fukamizo T Abstract Chitosan interaction with chitosanase was examined through analysis of spectral line shapes in the NMR HSQC titration experiments. We established that the substrate, chitosan hexamer, binds to the enzyme through the...
nmrlearner Journal club 0 04-11-2017 04:27 PM
NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase
NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase Abstract Chitosan interaction with chitosanase was examined through analysis of spectral line shapes in the NMR HSQC titration experiments. We established that the substrate, chitosan hexamer, binds to the enzyme through the three-state induced-fit mechanism with fast formation of the encounter complex followed by slow isomerization of the bound-state into the final conformation. Mapping of the chemical shift perturbations in two sequential steps of the mechanism...
nmrlearner Journal club 0 04-10-2017 12:51 AM
[NMR paper] Analyzing protein-ligand interactions by dynamic NMR spectroscopy.
Analyzing protein-ligand interactions by dynamic NMR spectroscopy. Related Articles Analyzing protein-ligand interactions by dynamic NMR spectroscopy. Methods Mol Biol. 2013;1008:243-66 Authors: Mittermaier A, Meneses E Abstract Nuclear magnetic resonance (NMR) spectroscopy can provide detailed information on protein-ligand interactions that is inaccessible using other biophysical techniques. This chapter focuses on NMR-based approaches for extracting affinity and rate constants for weakly binding transient protein complexes with lifetimes...
nmrlearner Journal club 0 06-05-2013 06:53 PM
[NMR paper] Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications.
Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. Related Articles Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J Am Chem Soc. 2005 Sep 28;127(38):13380-5 Authors: Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kümmerle R NMR-based binding and functional screening performed with FAXS (fluorine chemical shift anisotropy and exchange for screening) and 3-FABS (three fluorine atoms...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Theoretical and computational advances in biomolecular NMR spectroscopy.
Theoretical and computational advances in biomolecular NMR spectroscopy. Related Articles Theoretical and computational advances in biomolecular NMR spectroscopy. Curr Opin Struct Biol. 2002 Apr;12(2):146-53 Authors: Clore GM, Schwieters CD Recent developments in experimental and computational aspects of NMR spectroscopy have had a significant impact on the accuracy and speed of macromolecular structure determination in solution, particularly with regard to systems of high complexity (such as protein complexes). These include experiments...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies
NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry. 1996 Jul 30;35(30):9637-46 Authors: Scheuring J, Fischer M, Cushman M, Lee J, Bacher A,...
nmrlearner Journal club 0 08-22-2010 02:20 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:25 PM.


Map