Solid-state NMR (ssNMR) methods have continued to be developed in recent years for the efficient assignment of signals and 3D structure modeling of biomacromolecules. Consequently, we are approaching an era in which vigorous applications of these methods are more widespread in research, including functional elucidation of biomacromolecules and drug discovery. However, multidimensional ssNMR methods are not as advanced as solution NMR methods, especially for automated data analysis. This article...
[NMR paper] Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin.
Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin.
Related Articles Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin.
J Magn Reson. 2014 Dec 26;
Authors: Ward ME, Brown LS, Ladizhansky V
Abstract
Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state...
nmrlearner
Journal club
0
02-01-2015 08:50 PM
[NMR paper] Advanced Solid-State NMR Techniques for Characterization of Membrane Protein Structure and Dynamics: Application to Anabaena Sensory Rhodopsin
Advanced Solid-State NMR Techniques for Characterization of Membrane Protein Structure and Dynamics: Application to Anabaena Sensory Rhodopsin
Publication date: Available online 26 December 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Meaghan E. Ward , Leonid S. Brown , Vladimir Ladizhansky</br>
Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past...
nmrlearner
Journal club
0
12-27-2014 03:04 AM
Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment
Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment
Abstract
Magic-angle spinning solid-state NMR has been applied to study CBM3bâ??Cbh9A (CBM3b), a cellulose binding module protein belonging to family 3b. It is a 146-residue protein having a unique nine-stranded β-sandwich fold, in which 35Â*% of the structure is in a β-sheet conformation and the remainder of the protein is composed of loops and unstructured regions. Yet, the protein can be crystalized...
nmrlearner
Journal club
0
06-19-2014 10:21 PM
[NMR paper] Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.
Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.
J Biomol NMR. 2014 May 14;
Authors: Ivanir H, Goldbourt A
Abstract
Magic-angle spinning...
nmrlearner
Journal club
0
05-16-2014 08:06 PM
Solid-state NMR analysis of the ?-strand orientation of the protofibrils of amyloid ?-protein
Solid-state NMR analysis of the ?-strand orientation of the protofibrils of amyloid ?-protein
30 November 2012
Publication year: 2012
Source:Biochemical and Biophysical Research Communications, Volume 428, Issue 4</br>
</br>
Alzheimer’s disease (AD) is caused by abnormal deposition (fibrillation) of a 42-residue amyloid ?-protein (A?42) in the brain. During the process of fibrillation, the A?42 takes the form of protofibrils with strong neurotoxicity, and is thus believed to play a crucial role in the pathogenesis of AD. To elucidate the supramolecular structure of the...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid ?-protein fibrils.
Bioorg Med Chem. 2011 Aug 27;
Authors: Masuda Y, Fukuchi M, Yatagawa T, Tada M, Takeda K, Irie K, Akagi KI, Monobe Y, Imazawa T, Takegoshi K
Abstract
Aggregation of 42-residue amyloid ?-protein (A?42) plays a pivotal role in the etiology of Alzheimer's disease (AD). Curcumin, the yellow pigment in the rhizome of turmeric, attracts...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Solid-state NMR of amyloid membrane interactions.
Solid-state NMR of amyloid membrane interactions.
Solid-state NMR of amyloid membrane interactions.
Methods Mol Biol. 2011;752:165-77
Authors: Gehman JD, Separovic F
Solid-state NMR pulse sequences often feature fewer pulses and delays than the more common solution NMR experiments. This ostensible simplicity, however, belies the care with which experimental parameters must be determined, as solid-state NMR can be much less forgiving of improper experimental set-up. This is especially true of "semi-solid" samples, such as the phospholipid vesicles...