Analysis of Proteinogenic Amino Acid and Starch Labeling by 2D NMR.
Methods Mol Biol. 2014;1090:87-105
Authors: Truong Q, Shanks JV
Abstract
Comprehensive analysis of isotopic labeling patterns of metabolites in proteinogenic amino acids and starch for plant systems lay in the powerful tool of 2-Dimensional [(1)H, (13)C] Nuclear Magnetic Resonance (2D NMR) spectroscopy. From (13)C-labeling experiments, 2D NMR provides information on the labeling of particular carbon positions, which contributes to the quantification of positional isotope isomers (isotopomer). 2D Heteronuclear Single Quantum Correlation (HSQC) NMR distinguishes particularly between the labeling patterns of adjacent carbon atoms, and leads to a characteristic enrichment of each carbon atom of amino acids and glucosyl and mannosyl units present in hydrolysates of glycosylated protein. Furthermore, this technique can quantitatively classify differences in glucosyl units of starch hydrolysate and of protein hydrolysate of plant biomass. Therefore, the 2D HSQC NMR method uses proteinogenic amino acids and starch to provide an understanding of carbon distribution of compartmentalization in the plant system. NMR has the advantage of minimal sample handle without separate individual compounds prior to analysis, for example multiple isotopomers can be detected, and their distribution extracted quantitatively from a single 2D HSQC NMR spectrum. The peak structure obtained from the HSQC experiment show multiplet patterns, which are directly related to isotopomer balancing. These abundances can be translated to maximum information on the metabolic flux analysis. Detailed methods for the extractions of protein, oil, soluble sugars, and starch, hydrolysis of proteinogenic amino acid and starch, and NMR preparation using soybean embryos cultured in vitro as a model plant systems are reported in this text. In addition, this chapter includes procedures to obtain the relative intensity of 16 amino acids and glucosyl units from protein hydrolysate and the glucosyl units of starch hydrolysate of soybean embryos in 2D HSQC NMR spectra.
[NMR paper] Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology.
Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology.
Chembiochem. 2013 Jan 30;
Authors: Michel E, Skrisovska L, Wüthrich K, Allain FH
Abstract
Current solution NMR techniques enable structural investigations of proteins in molecular particles with sizes...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling.
A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling.
A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling.
J Struct Funct Genomics. 2011 Aug 25;
Authors: Hiroaki H, Umetsu Y, Nabeshima YI, Hoshi M, Kohda D
Abstract
Assignment of backbone amide proton resonances is one of the most time-consuming stages of any protein NMR study when the protein samples behave non-ideally. A robust and convenient NMR procedure for analyzing spectra of...
[NMR paper] Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and ir
Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli.
Related Articles Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli.
J Biomol NMR. 2000 Aug;17(4):311-22
Authors: Sorkin DL, Miller AF
We have developed and employed multiple amino acid-specific isotopic labeling schemes to obtain definitive assignments for active site 1H NMR resonances of iron(II)- and iron(III)-superoxide...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for
Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis.
Related Articles Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis.
J Biomol NMR. 1995 Sep;6(2):129-34
Authors: Kigawa T, Muto Y, Yokoyama S
For the application of multidimensional NMR spectroscopy to larger proteins, it would be useful to perform selective labeling of one of the 20 amino acids. For some amino acids, however, amino acid metabolism drastically reduces the efficiency and selectivity...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled ba
Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins.
Related Articles Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins.
J Biomol NMR. 1999 May;14(1):79-83
Authors: Kelly MJ, Krieger C, Ball LJ, Yu Y, Richter G, Schmieder P, Bacher A, Oschkinat H
NMR investigations of larger macromolecules (> 20...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli
A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli
Kit I. Tong, Masayuki Yamamoto and Toshiyuki Tanaka
Journal of Biomolecular NMR; 2008; 42(1); pp 59-67
Abstract:
A simple and user-friendly method of labeling protein selectively with amino acids in vivo is introduced. This technique does not require the use of transaminase-deficient or auxotrophic strains. By manipulating the product feedback inhibitory loops of the E. coli amino acid metabolic pathways and, if necessary, by using enzyme inhibitors, proteins were labeled efficiently in vivo...