BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Analysis of the 1H-NMR chemical shifts of Cu(I)-, Cu(II)- and Cd-substituted pea plas

Analysis of the 1H-NMR chemical shifts of Cu(I)-, Cu(II)- and Cd-substituted pea plastocyanin. Metal-dependent differences in the hydrogen-bond network around the copper site.

Related Articles Analysis of the 1H-NMR chemical shifts of Cu(I)-, Cu(II)- and Cd-substituted pea plastocyanin. Metal-dependent differences in the hydrogen-bond network around the copper site.

Eur J Biochem. 1996 Nov 15;242(1):132-47

Authors: Ubbink M, Lian LY, Modi S, Evans PA, Bendall DS

To compare cadmium-substituted plastocyanin with copper plastocyanin, the 1H-NMR spectra of CuI-, CuII- and Cd-plastocyanin from pea have been analyzed. Full assignments of the spectra of CuI- and Cd-plastocyanin indicate chemical shift differences up to 1 ppm. The affected protons are located in the four loops that surround the Cu site. The largest differences were found for protons in the hydrogen bond network which stabilizes this part of the protein. This suggests that the chemical shift differences are caused by very small but extensive structural changes in the network upon replacement of CuI by Cd. For CuII-plastocyanin the resonances of 72% of the protons observed in the CuI form have been identified. Protons within approximately 0.9 nm of the CuII were not observed due to fast paramagnetic relaxation. The protons between 0.9-1.7 nm from the CuII showed chemical shift differences up to 0.4 ppm compared to both CuI- and Cd-plastocyanin. These differences can be predicted assuming that they represent pseudocontact shifts. When corrected for the pseudocontact shift contribution, the CuII-plastocyanin chemical shifts were nearly all identical within error to those of the Cd form, but not of the CuI-plastocyanin, indicating that the CuII-plastocyanin structure, in as far as it can be observed, resembles Cd-rather than CuI-plastocyanin. In a single stretch of residues (64-69) chemical shift differences remained between all three forms after correction. The fact that pseudocontact shifts were observed for protons which were not broadened may be attributable to the weaker distance dependence of the pseudocontact shift effect compared to paramagnetic relaxation. This results in two shells around the Cu atom, an inner paramagnetic shell (0-0.9 nm), in which protons are not observed due to broadening, and an outer paramagnetic shell (0.9-1.7 nm), in which protons can be observed and show pseudocontact shifts. It is concluded that Cd-plastocyanin is a suitable redox-inactive substitute for Cu-plastocyanin.

PMID: 8954163 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Mapping allostery through the covariance analysis of NMR chemical shifts [Biophysics and Computational Biology]
Mapping allostery through the covariance analysis of NMR chemical shifts Selvaratnam, R., Chowdhury, S., VanSchouwen, B., Melacini, G.... Date: 2011-04-12 Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical...
nmrlearner Journal club 0 04-13-2011 01:15 AM
Mapping allostery through the covariance analysis of NMR chemical shifts.
Mapping allostery through the covariance analysis of NMR chemical shifts. Mapping allostery through the covariance analysis of NMR chemical shifts. Proc Natl Acad Sci U S A. 2011 Mar 28; Authors: Selvaratnam R, Chowdhury S, Vanschouwen B, Melacini G Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the...
nmrlearner Journal club 0 03-31-2011 06:24 PM
19F chemical shifts.jpg
http://upload.wikimedia.org/wikimedia/commons/thumb/2/2e/19F_chemical_shifts.jpg/300px-19F_chemical_shifts.jpg Uploaded by user "Artb33" on Sun, 06 Mar 2011 14:16:00 UTC Added to category on Sun, 06 Mar 2011 14:16:18 UTC Original image: 11812×8197 pixel; 1.905.499 bytes. Licensing : CC-BY-SA,GFDL 19F chemical shifts.jpg More...
nmrlearner NMR pictures 0 03-06-2011 03:35 PM
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues <div class="Abstract">Abstract In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its us
Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. Related Articles Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR. 2005 May;32(1):71-81 Authors: Eghbalnia HR, Wang L, Bahrami A, Assadi A, Markley JL We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low...
nmrlearner Journal club 0 11-25-2010 08:21 PM
Analysis of and chemical shifts of cysteine and cystine residues in proteins: a quant
Abstract Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the 13\textC\upalpha and 13\textC\upbeta chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Analysis of NMR Chemical Shifts in Peptide & Protein Structure Determination-Wang '08
Analysis of NMR Chemical Shifts in Peptide and Protein Structure Determination By Liya Wang (2008) Amazon book description Chemical shifts provide detailed information about non-covalent structure, solvent interactions, ionization constants, ring orientations, hydrogen bond interactions, and other phenomena. Since different chemical shift data sets are not necessarily comparable without corrections or adjustments, the applicability of statistical analysis of NMR chemical shifts to biomolecules has so far been limited. We use the term "congruent" to describe data sets that can be...
Nikolai Books 0 08-20-2008 09:38 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:48 PM.


Map