We describe a new labeling method that allows for full protonation at the backbone Hα position, maintaining protein side chains with a high level of deuteration. We refer to the method as alpha proton exchange by transamination (α-PET) since it relies on transaminase activity demonstrated here using Escherichia coli expression. We show that α-PET labeling is particularly useful in improving structural characterization of solid proteins by introduction of an additional proton reporter, while eliminating many strong dipolar couplings. The approach benefits from the high sensitivity associated with 1.3Â*mm samples, more abundant information including Hα resonances, and the narrow proton linewidths encountered for highly deuterated proteins. The labeling strategy solves amide proton exchange problems commonly encountered for membrane proteins when using perdeuteration and backexchange protocols, allowing access to alpha and all amide protons including those in exchange-protected regions. The incorporation of Hα protons provides new insights, as the close Hαâ??Hα and Hαâ??HN contacts present in β-sheets become accessible, improving the chance to determine the protein structure as compared with HNâ??HN contacts alone. Protonation of the Hα position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, allowing stereospecific assignment of glycine alpha protons. In solution, we show that the high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the study of large proteins and protein dynamics. We demonstrate the method using two model systems, as well as a 32Â*kDa membrane protein, hVDAC1, showing the applicability of the method to study membrane proteins.
Electron spin resonance studies on deuterated nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging #DNPNMR #ODNP
From The DNP-NMR Blog:
Electron spin resonance studies on deuterated nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging #DNPNMR #ODNP
Jebaraj, D. David, Hideo Utsumi, and A. Milton Franklin Benial. “Electron Spin Resonance Studies on Deuterated Nitroxyl Spin Probes Used in Overhauser-Enhanced Magnetic Resonance Imaging.” Magnetic Resonance in Chemistry 55, no. 8 (2017): 700–705.
https://doi.org/10.1002/mrc.4576.
nmrlearner
News from NMR blogs
0
06-23-2018 12:47 AM
Dynamic nuclear polarization studies on deuterated nitroxyl spin probes #DNPNMR
From The DNP-NMR Blog:
Dynamic nuclear polarization studies on deuterated nitroxyl spin probes #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
David Jebaraj, D., H. Utsumi, and A. Milton Franklin Benial, Dynamic nuclear polarization studies on deuterated nitroxyl spin probes. Magn Reson Chem, 2017. 55(10): p. 909-916.
https://www.ncbi.nlm.nih.gov/pubmed/28444914
nmrlearner
News from NMR blogs
0
10-03-2017 03:24 AM
[NMR paper] Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
Phys Chem Chem Phys. 2015 Dec 21;
Authors: Vasa SK, Rovó P, Giller K, Becker S, Linser R
Abstract
Interactions within proteins, with their surrounding, and with other molecules are mediated mostly by hydrogen atoms. In...
nmrlearner
Journal club
0
12-28-2015 12:26 AM
An optimized method for 15 N R 1 relaxation rate measurements in non-deuterated proteins
An optimized method for 15 N R 1 relaxation rate measurements in non-deuterated proteins
Abstract
15N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. 15N CSA/1Hâ??15N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of 15N R1 rates through 1Hâ??15N HSQC-based experiments. CC is usually...
nmrlearner
Journal club
0
05-07-2015 12:59 AM
[NMR paper] Assignment of the nonexchanging protons of the alpha-spectrin SH3 domain by two- and
Assignment of the nonexchanging protons of the alpha-spectrin SH3 domain by two- and three-dimensional 1H-13C solid-state magic-angle spinning NMR and comparison of solution and solid-state proton chemical shifts.
Related Articles Assignment of the nonexchanging protons of the alpha-spectrin SH3 domain by two- and three-dimensional 1H-13C solid-state magic-angle spinning NMR and comparison of solution and solid-state proton chemical shifts.
Chembiochem. 2001 Dec 3;2(12):906-14
Authors: van Rossum BJ, Castellani F, Rehbein K, Pauli J, Oschkinat H
...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
Related Articles NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
J Biomol NMR. 1992 Sep;2(5):447-65
Authors: Liepinsh E, Otting G, Wüthrich K
Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
NMR of Naphthalene: why are the alpha-protons more downfield than the beta- protons?
Hi, can you please help me explain why the alpha-protons of naphthalene are further downfield? I know that the protons at the alpha position must be more deshielded, but I don't know how to explain why they have less electron density compared to the beta protons. Does this have to do with the number of double bonds that can be drawn in different resonance structures? Thanks for your help!Thanks so much!