BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-19-2014, 10:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

Abstract

Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility.
Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility. Related Articles Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility. J Mol Biol. 2014 Feb 12; Authors: Sinnige T, Weingarth M, Renault M, Baker L, Tommassen J, Baldus M Abstract The outer membrane protein BamA is the key player in ?-barrel assembly in Gram-negative bacteria. Despite the availability of high-resolution crystal structures, the dynamic behavior of the transmembrane domain and...
nmrlearner Journal club 0 02-19-2014 12:07 AM
[NMR paper] Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain.
Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain. Related Articles Solution NMR assignment of the heavy chain complex of the human cardiac myosin regulatory light chain. Biomol NMR Assign. 2014 Jan 12; Authors: Rostkova E, Gautel M, Pfuhl M Abstract The regulatory light chain (RLC) of striated and cardiac muscle myosin plays a complex role in muscle function and regulation. Together with the essential light chain it provides stability to the lever arm, which is essential for force...
nmrlearner Journal club 0 01-15-2014 05:16 PM
[NMR paper] Improved NMR experiments with (13)C-isotropic mixing for assignment of aromatic and aliphatic side chains in labeled proteins.
Improved NMR experiments with (13)C-isotropic mixing for assignment of aromatic and aliphatic side chains in labeled proteins. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Improved NMR experiments with (13)C-isotropic mixing for assignment of aromatic and aliphatic side chains in labeled proteins. J Biomol NMR. 2014 Jan 4; Authors: Kovacs H, Gossert A Abstract Three improved (13)C-spinlock experiments for side chain assignments of...
nmrlearner Journal club 0 01-07-2014 11:16 PM
[Question from NMRWiki Q&A forum] How to calibrate pulse length for urine samples?
How to calibrate pulse length for urine samples? I recently read an article about executing a WET sequence for water suppression in urine samples. The 90°excitation pulse should be calibrated at the beginning of the data acquisition for each sample. what causes the changes of pulse length between different samples? I've read the book "200 and more nmr experiments" and other manuals but I couldn't find the answer. I'm confused about how to selected a proper resonance in mixture for calibration. Should I choose the water resonance in urine spectra for calibraion? Because other signals were...
nmrlearner News from other NMR forums 0 12-18-2013 03:14 AM
[NMR paper] Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Related Articles Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc. 2013 Nov;8(11):2256-70 Authors: Das N, Murray DT, Cross TA Abstract
nmrlearner Journal club 0 10-27-2013 12:53 AM
[Question from NMRWiki Q&A forum] Longer pulse length for conducting samples?
Longer pulse length for conducting samples? Hi, my 1H 90 deg pulses are always longer when I work with my samples that are electrically conducting. Is this a/the reason why it is long? Any similar experiences? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-04-2012 05:22 AM
[NMR paper] Optimizing oriented planar-supported lipid samples for solid-state protein NMR.
Optimizing oriented planar-supported lipid samples for solid-state protein NMR. Related Articles Optimizing oriented planar-supported lipid samples for solid-state protein NMR. Biophys J. 2005 Oct;89(4):2792-805 Authors: Rainey JK, Sykes BD Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Mixing apparatus for preparing NMR samples under pressure.
Mixing apparatus for preparing NMR samples under pressure. Related Articles Mixing apparatus for preparing NMR samples under pressure. J Magn Reson. 2003 Sep;164(1):84-91 Authors: Wu WJ, Vidugiris G, Mooberry ES, Westler WM, Markley JL The size limit for protein NMR spectroscopy in solution arises in large part from line broadening caused by slow molecular tumbling. One way to alleviate this problem is to increase the effective tumbling rate by reducing the viscosity of the solvent. Because proteins generally require an aqueous environment to...
nmrlearner Journal club 0 11-24-2010 09:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:37 AM.


Map