An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins.
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins.
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins.
Chem Commun (Camb). 2011 Jul 26;
Authors: Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J
An efficient synthetic route is proposed to produce 2-hydroxy-2-ethyl-3-oxobutanoate for the specific labelling of Ile methyl-?(2) groups in proteins. The (2)H,...
nmrlearner
Journal club
0
07-28-2011 10:51 AM
Methyl groups as probes of supra-molecular structure, dynamics and function
Methyl groups as probes of supra-molecular structure, dynamics and function
Abstract The development of new protein labeling strategies, along with optimized experiments that exploit the label, have significantly impacted on the types of biochemical problems that can now be addressed by solution NMR spectroscopy. Here we describe how methyl labeling of key residues in a highly deuterated protein background has facilitated studies of the structure, dynamics and interactions of supra-molecular particles. The methyl-labeling approach is briefly reviewed, followed by a summary of...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin r
Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
Related Articles Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
J Am Chem Soc. 2005 Jun 8;127(22):8214-25
Authors: Tugarinov V, Ollerenshaw JE, Kay LE
New NMR experiments for the measurement of side-chain dynamics in high molecular weight ( approximately 100 kDa) proteins are presented. The experiments quantify (2)H spin...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Methyl groups as probes for proteins and complexes in in-cell NMR experiments.
Methyl groups as probes for proteins and complexes in in-cell NMR experiments.
Related Articles Methyl groups as probes for proteins and complexes in in-cell NMR experiments.
J Am Chem Soc. 2004 Jun 9;126(22):7119-25
Authors: Serber Z, Straub W, Corsini L, Nomura AM, Shimba N, Craik CS, Ortiz de Montellano P, Dötsch V
Studying protein components of large intracellular complexes by in-cell NMR has so far been impossible because the backbone resonances are unobservable due to their slow tumbling rates. We describe a methodology that overcomes...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
J Mol Biol. 2003 Apr 11;327(5):1121-33
Authors: Tugarinov V, Kay LE
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR.
Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Related Articles Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Biopolymers. 2002 Oct 15;65(2):158-68
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Naito A, Okuda K, Saitô H, Gil AM
This work follows a previous article that addressed the role of disulfide bonds in...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state
Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Related Articles Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Biopolymers. 2002;67(6):487-98
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Gil AM
This work describes a carbon and proton solid-state NMR study of the hydration of a high molecular weight wheat glutenin subunit, 1Dx5. The effect of the presence of...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
J Biomol NMR. 2000 Jan;16(1):79-80
Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ